L(s) = 1 | − 2-s + 4-s − 3.79·5-s − 8-s + 3.79·10-s − 11-s + 0.361·13-s + 16-s + 4.11·17-s + 4.15·19-s − 3.79·20-s + 22-s − 0.542·23-s + 9.42·25-s − 0.361·26-s − 0.767·29-s − 8.80·31-s − 32-s − 4.11·34-s + 2.28·37-s − 4.15·38-s + 3.79·40-s − 9.13·41-s − 10.1·43-s − 44-s + 0.542·46-s + 2.98·47-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s − 1.69·5-s − 0.353·8-s + 1.20·10-s − 0.301·11-s + 0.100·13-s + 0.250·16-s + 0.998·17-s + 0.954·19-s − 0.849·20-s + 0.213·22-s − 0.113·23-s + 1.88·25-s − 0.0707·26-s − 0.142·29-s − 1.58·31-s − 0.176·32-s − 0.705·34-s + 0.375·37-s − 0.674·38-s + 0.600·40-s − 1.42·41-s − 1.55·43-s − 0.150·44-s + 0.0800·46-s + 0.435·47-s + ⋯ |
Λ(s)=(=(9702s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9702s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7036971129 |
L(21) |
≈ |
0.7036971129 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 7 | 1 |
| 11 | 1+T |
good | 5 | 1+3.79T+5T2 |
| 13 | 1−0.361T+13T2 |
| 17 | 1−4.11T+17T2 |
| 19 | 1−4.15T+19T2 |
| 23 | 1+0.542T+23T2 |
| 29 | 1+0.767T+29T2 |
| 31 | 1+8.80T+31T2 |
| 37 | 1−2.28T+37T2 |
| 41 | 1+9.13T+41T2 |
| 43 | 1+10.1T+43T2 |
| 47 | 1−2.98T+47T2 |
| 53 | 1−12.4T+53T2 |
| 59 | 1+2.25T+59T2 |
| 61 | 1−12.2T+61T2 |
| 67 | 1−0.603T+67T2 |
| 71 | 1−6.87T+71T2 |
| 73 | 1−9.45T+73T2 |
| 79 | 1−0.0321T+79T2 |
| 83 | 1+10.8T+83T2 |
| 89 | 1−1.29T+89T2 |
| 97 | 1+18.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.64639561792872286237024838392, −7.27778828988915799128135572717, −6.66564050193946044624245464395, −5.50361048404764323280807173334, −5.06207505048478503417029193598, −3.82658408903865063364265524386, −3.57831477886499631822968295562, −2.67332531852282836318390317425, −1.44543148355820861875495028477, −0.46830935610164087318279491479,
0.46830935610164087318279491479, 1.44543148355820861875495028477, 2.67332531852282836318390317425, 3.57831477886499631822968295562, 3.82658408903865063364265524386, 5.06207505048478503417029193598, 5.50361048404764323280807173334, 6.66564050193946044624245464395, 7.27778828988915799128135572717, 7.64639561792872286237024838392