Properties

Label 2-9702-1.1-c1-0-10
Degree $2$
Conductor $9702$
Sign $1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3.79·5-s − 8-s + 3.79·10-s − 11-s + 0.361·13-s + 16-s + 4.11·17-s + 4.15·19-s − 3.79·20-s + 22-s − 0.542·23-s + 9.42·25-s − 0.361·26-s − 0.767·29-s − 8.80·31-s − 32-s − 4.11·34-s + 2.28·37-s − 4.15·38-s + 3.79·40-s − 9.13·41-s − 10.1·43-s − 44-s + 0.542·46-s + 2.98·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 1.69·5-s − 0.353·8-s + 1.20·10-s − 0.301·11-s + 0.100·13-s + 0.250·16-s + 0.998·17-s + 0.954·19-s − 0.849·20-s + 0.213·22-s − 0.113·23-s + 1.88·25-s − 0.0707·26-s − 0.142·29-s − 1.58·31-s − 0.176·32-s − 0.705·34-s + 0.375·37-s − 0.674·38-s + 0.600·40-s − 1.42·41-s − 1.55·43-s − 0.150·44-s + 0.0800·46-s + 0.435·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7036971129\)
\(L(\frac12)\) \(\approx\) \(0.7036971129\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 3.79T + 5T^{2} \)
13 \( 1 - 0.361T + 13T^{2} \)
17 \( 1 - 4.11T + 17T^{2} \)
19 \( 1 - 4.15T + 19T^{2} \)
23 \( 1 + 0.542T + 23T^{2} \)
29 \( 1 + 0.767T + 29T^{2} \)
31 \( 1 + 8.80T + 31T^{2} \)
37 \( 1 - 2.28T + 37T^{2} \)
41 \( 1 + 9.13T + 41T^{2} \)
43 \( 1 + 10.1T + 43T^{2} \)
47 \( 1 - 2.98T + 47T^{2} \)
53 \( 1 - 12.4T + 53T^{2} \)
59 \( 1 + 2.25T + 59T^{2} \)
61 \( 1 - 12.2T + 61T^{2} \)
67 \( 1 - 0.603T + 67T^{2} \)
71 \( 1 - 6.87T + 71T^{2} \)
73 \( 1 - 9.45T + 73T^{2} \)
79 \( 1 - 0.0321T + 79T^{2} \)
83 \( 1 + 10.8T + 83T^{2} \)
89 \( 1 - 1.29T + 89T^{2} \)
97 \( 1 + 18.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64639561792872286237024838392, −7.27778828988915799128135572717, −6.66564050193946044624245464395, −5.50361048404764323280807173334, −5.06207505048478503417029193598, −3.82658408903865063364265524386, −3.57831477886499631822968295562, −2.67332531852282836318390317425, −1.44543148355820861875495028477, −0.46830935610164087318279491479, 0.46830935610164087318279491479, 1.44543148355820861875495028477, 2.67332531852282836318390317425, 3.57831477886499631822968295562, 3.82658408903865063364265524386, 5.06207505048478503417029193598, 5.50361048404764323280807173334, 6.66564050193946044624245464395, 7.27778828988915799128135572717, 7.64639561792872286237024838392

Graph of the $Z$-function along the critical line