L(s) = 1 | − 1.66·2-s − 1.15·3-s + 0.770·4-s + 1.93·6-s + 2.43·7-s + 2.04·8-s − 1.65·9-s − 5.75·11-s − 0.893·12-s − 1.59·13-s − 4.05·14-s − 4.94·16-s + 5.98·17-s + 2.75·18-s − 2.82·21-s + 9.57·22-s + 0.940·23-s − 2.37·24-s + 2.65·26-s + 5.39·27-s + 1.87·28-s − 2.61·29-s + 5.26·31-s + 4.14·32-s + 6.67·33-s − 9.96·34-s − 1.27·36-s + ⋯ |
L(s) = 1 | − 1.17·2-s − 0.669·3-s + 0.385·4-s + 0.788·6-s + 0.920·7-s + 0.723·8-s − 0.551·9-s − 1.73·11-s − 0.258·12-s − 0.442·13-s − 1.08·14-s − 1.23·16-s + 1.45·17-s + 0.649·18-s − 0.616·21-s + 2.04·22-s + 0.196·23-s − 0.484·24-s + 0.520·26-s + 1.03·27-s + 0.354·28-s − 0.486·29-s + 0.946·31-s + 0.732·32-s + 1.16·33-s − 1.70·34-s − 0.212·36-s + ⋯ |
Λ(s)=(=(9025s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9025s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.4768253244 |
L(21) |
≈ |
0.4768253244 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1+1.66T+2T2 |
| 3 | 1+1.15T+3T2 |
| 7 | 1−2.43T+7T2 |
| 11 | 1+5.75T+11T2 |
| 13 | 1+1.59T+13T2 |
| 17 | 1−5.98T+17T2 |
| 23 | 1−0.940T+23T2 |
| 29 | 1+2.61T+29T2 |
| 31 | 1−5.26T+31T2 |
| 37 | 1+2.89T+37T2 |
| 41 | 1−6.31T+41T2 |
| 43 | 1+4.53T+43T2 |
| 47 | 1+8.95T+47T2 |
| 53 | 1+2.19T+53T2 |
| 59 | 1−10.7T+59T2 |
| 61 | 1+10.5T+61T2 |
| 67 | 1−1.00T+67T2 |
| 71 | 1+8.83T+71T2 |
| 73 | 1−10.2T+73T2 |
| 79 | 1+7.60T+79T2 |
| 83 | 1+3.11T+83T2 |
| 89 | 1−11.1T+89T2 |
| 97 | 1−4.05T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.86080371179971973051156040140, −7.45328281187911444555217575427, −6.46560191328559063941042043957, −5.50609763972348593591930320635, −5.12226906379260178962265908387, −4.56226506936702915316399510193, −3.22755732048517901531965320170, −2.39842534605707709598620779330, −1.41033245981883767143394211320, −0.43993708233029008854818624015,
0.43993708233029008854818624015, 1.41033245981883767143394211320, 2.39842534605707709598620779330, 3.22755732048517901531965320170, 4.56226506936702915316399510193, 5.12226906379260178962265908387, 5.50609763972348593591930320635, 6.46560191328559063941042043957, 7.45328281187911444555217575427, 7.86080371179971973051156040140