L(s) = 1 | + 1.90·2-s + 1.90·3-s + 1.61·4-s + 3.61·6-s + 4.23·7-s − 0.726·8-s + 0.618·9-s − 5.85·11-s + 3.07·12-s − 3.07·13-s + 8.05·14-s − 4.61·16-s − 5.23·17-s + 1.17·18-s + 8.05·21-s − 11.1·22-s − 4.09·23-s − 1.38·24-s − 5.85·26-s − 4.53·27-s + 6.85·28-s − 2.80·29-s + 1.90·31-s − 7.33·32-s − 11.1·33-s − 9.95·34-s + 0.999·36-s + ⋯ |
L(s) = 1 | + 1.34·2-s + 1.09·3-s + 0.809·4-s + 1.47·6-s + 1.60·7-s − 0.256·8-s + 0.206·9-s − 1.76·11-s + 0.888·12-s − 0.853·13-s + 2.15·14-s − 1.15·16-s − 1.26·17-s + 0.277·18-s + 1.75·21-s − 2.37·22-s − 0.852·23-s − 0.282·24-s − 1.14·26-s − 0.871·27-s + 1.29·28-s − 0.519·29-s + 0.341·31-s − 1.29·32-s − 1.93·33-s − 1.70·34-s + 0.166·36-s + ⋯ |
Λ(s)=(=(9025s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9025s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1−1.90T+2T2 |
| 3 | 1−1.90T+3T2 |
| 7 | 1−4.23T+7T2 |
| 11 | 1+5.85T+11T2 |
| 13 | 1+3.07T+13T2 |
| 17 | 1+5.23T+17T2 |
| 23 | 1+4.09T+23T2 |
| 29 | 1+2.80T+29T2 |
| 31 | 1−1.90T+31T2 |
| 37 | 1−2.80T+37T2 |
| 41 | 1+6.88T+41T2 |
| 43 | 1+0.381T+43T2 |
| 47 | 1−1.47T+47T2 |
| 53 | 1+11.1T+53T2 |
| 59 | 1−14.0T+59T2 |
| 61 | 1−3.94T+61T2 |
| 67 | 1+5.98T+67T2 |
| 71 | 1−0.171T+71T2 |
| 73 | 1−T+73T2 |
| 79 | 1+5.25T+79T2 |
| 83 | 1−8.76T+83T2 |
| 89 | 1−7.77T+89T2 |
| 97 | 1−2.62T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.61818666960757053362030214104, −6.65401389506258334832666580343, −5.66734294314587286774730887540, −5.09611144754851109528460127156, −4.65735883141102259682088182730, −3.95994281196290031332710496106, −3.03898527746209755051834103371, −2.29186905702727473181062185612, −2.04356528642148507974529970904, 0,
2.04356528642148507974529970904, 2.29186905702727473181062185612, 3.03898527746209755051834103371, 3.95994281196290031332710496106, 4.65735883141102259682088182730, 5.09611144754851109528460127156, 5.66734294314587286774730887540, 6.65401389506258334832666580343, 7.61818666960757053362030214104