L(s) = 1 | + 2·3-s − 2·4-s + 4·7-s + 9-s + 3·11-s − 4·12-s − 2·13-s + 4·16-s − 6·17-s + 8·21-s − 4·27-s − 8·28-s − 3·29-s − 7·31-s + 6·33-s − 2·36-s − 8·37-s − 4·39-s − 6·41-s + 4·43-s − 6·44-s − 6·47-s + 8·48-s + 9·49-s − 12·51-s + 4·52-s + 6·53-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 4-s + 1.51·7-s + 1/3·9-s + 0.904·11-s − 1.15·12-s − 0.554·13-s + 16-s − 1.45·17-s + 1.74·21-s − 0.769·27-s − 1.51·28-s − 0.557·29-s − 1.25·31-s + 1.04·33-s − 1/3·36-s − 1.31·37-s − 0.640·39-s − 0.937·41-s + 0.609·43-s − 0.904·44-s − 0.875·47-s + 1.15·48-s + 9/7·49-s − 1.68·51-s + 0.554·52-s + 0.824·53-s + ⋯ |
Λ(s)=(=(9025s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9025s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1+pT2 |
| 3 | 1−2T+pT2 |
| 7 | 1−4T+pT2 |
| 11 | 1−3T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+6T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+3T+pT2 |
| 31 | 1+7T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+6T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1+15T+pT2 |
| 61 | 1−5T+pT2 |
| 67 | 1+2T+pT2 |
| 71 | 1+3T+pT2 |
| 73 | 1+8T+pT2 |
| 79 | 1−5T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1+15T+pT2 |
| 97 | 1+8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.54077871130760231857953639957, −7.02670731199975696065066202804, −5.86857745605201058059579690124, −5.10667495915163109837412560658, −4.48119941130551282907573401981, −3.93584614361416858298673264501, −3.15451099160830095639023268055, −2.02950889034593554805831885097, −1.55378852660460568540896216770, 0,
1.55378852660460568540896216770, 2.02950889034593554805831885097, 3.15451099160830095639023268055, 3.93584614361416858298673264501, 4.48119941130551282907573401981, 5.10667495915163109837412560658, 5.86857745605201058059579690124, 7.02670731199975696065066202804, 7.54077871130760231857953639957