L(s) = 1 | + 2·3-s − 2·4-s + 4·7-s + 9-s + 3·11-s − 4·12-s − 2·13-s + 4·16-s − 6·17-s + 8·21-s − 4·27-s − 8·28-s − 3·29-s − 7·31-s + 6·33-s − 2·36-s − 8·37-s − 4·39-s − 6·41-s + 4·43-s − 6·44-s − 6·47-s + 8·48-s + 9·49-s − 12·51-s + 4·52-s + 6·53-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 4-s + 1.51·7-s + 1/3·9-s + 0.904·11-s − 1.15·12-s − 0.554·13-s + 16-s − 1.45·17-s + 1.74·21-s − 0.769·27-s − 1.51·28-s − 0.557·29-s − 1.25·31-s + 1.04·33-s − 1/3·36-s − 1.31·37-s − 0.640·39-s − 0.937·41-s + 0.609·43-s − 0.904·44-s − 0.875·47-s + 1.15·48-s + 9/7·49-s − 1.68·51-s + 0.554·52-s + 0.824·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + p T^{2} \) |
| 3 | \( 1 - 2 T + p T^{2} \) |
| 7 | \( 1 - 4 T + p T^{2} \) |
| 11 | \( 1 - 3 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 3 T + p T^{2} \) |
| 31 | \( 1 + 7 T + p T^{2} \) |
| 37 | \( 1 + 8 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + 6 T + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 + 15 T + p T^{2} \) |
| 61 | \( 1 - 5 T + p T^{2} \) |
| 67 | \( 1 + 2 T + p T^{2} \) |
| 71 | \( 1 + 3 T + p T^{2} \) |
| 73 | \( 1 + 8 T + p T^{2} \) |
| 79 | \( 1 - 5 T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 + 15 T + p T^{2} \) |
| 97 | \( 1 + 8 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.54077871130760231857953639957, −7.02670731199975696065066202804, −5.86857745605201058059579690124, −5.10667495915163109837412560658, −4.48119941130551282907573401981, −3.93584614361416858298673264501, −3.15451099160830095639023268055, −2.02950889034593554805831885097, −1.55378852660460568540896216770, 0,
1.55378852660460568540896216770, 2.02950889034593554805831885097, 3.15451099160830095639023268055, 3.93584614361416858298673264501, 4.48119941130551282907573401981, 5.10667495915163109837412560658, 5.86857745605201058059579690124, 7.02670731199975696065066202804, 7.54077871130760231857953639957