Properties

Label 2-95e2-1.1-c1-0-237
Degree $2$
Conductor $9025$
Sign $-1$
Analytic cond. $72.0649$
Root an. cond. $8.48910$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 3·7-s − 3·9-s − 5·11-s + 4·16-s + 7·17-s + 4·23-s + 6·28-s + 6·36-s + 43-s + 10·44-s − 13·47-s + 2·49-s + 15·61-s + 9·63-s − 8·64-s − 14·68-s + 11·73-s + 15·77-s + 9·81-s + 16·83-s − 8·92-s + 15·99-s + 10·101-s − 12·112-s − 21·119-s + ⋯
L(s)  = 1  − 4-s − 1.13·7-s − 9-s − 1.50·11-s + 16-s + 1.69·17-s + 0.834·23-s + 1.13·28-s + 36-s + 0.152·43-s + 1.50·44-s − 1.89·47-s + 2/7·49-s + 1.92·61-s + 1.13·63-s − 64-s − 1.69·68-s + 1.28·73-s + 1.70·77-s + 81-s + 1.75·83-s − 0.834·92-s + 1.50·99-s + 0.995·101-s − 1.13·112-s − 1.92·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9025\)    =    \(5^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(72.0649\)
Root analytic conductor: \(8.48910\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9025,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 \)
good2 \( 1 + p T^{2} \)
3 \( 1 + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 7 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 + 13 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 15 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61824713974920993594504764555, −6.63088607414418398663848705247, −5.84015582650017493723925533798, −5.29579516351674176013179187813, −4.85335432134469239130548931207, −3.48854845472212746808461755996, −3.31297016434738025974202284029, −2.43814410977130447009590932247, −0.871520748833572046051686868602, 0, 0.871520748833572046051686868602, 2.43814410977130447009590932247, 3.31297016434738025974202284029, 3.48854845472212746808461755996, 4.85335432134469239130548931207, 5.29579516351674176013179187813, 5.84015582650017493723925533798, 6.63088607414418398663848705247, 7.61824713974920993594504764555

Graph of the $Z$-function along the critical line