Properties

Label 2-95550-1.1-c1-0-139
Degree $2$
Conductor $95550$
Sign $1$
Analytic cond. $762.970$
Root an. cond. $27.6219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 8-s + 9-s + 4·11-s − 12-s + 13-s + 16-s + 6·17-s + 18-s − 4·19-s + 4·22-s + 4·23-s − 24-s + 26-s − 27-s + 2·29-s + 4·31-s + 32-s − 4·33-s + 6·34-s + 36-s + 10·37-s − 4·38-s − 39-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 1.20·11-s − 0.288·12-s + 0.277·13-s + 1/4·16-s + 1.45·17-s + 0.235·18-s − 0.917·19-s + 0.852·22-s + 0.834·23-s − 0.204·24-s + 0.196·26-s − 0.192·27-s + 0.371·29-s + 0.718·31-s + 0.176·32-s − 0.696·33-s + 1.02·34-s + 1/6·36-s + 1.64·37-s − 0.648·38-s − 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95550\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(762.970\)
Root analytic conductor: \(27.6219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 95550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.222917051\)
\(L(\frac12)\) \(\approx\) \(5.222917051\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.71915261648579, −13.36952543631633, −12.66366044476730, −12.37622710560358, −11.92688390884453, −11.42437642734453, −10.95852739231854, −10.57137091168629, −9.734431530512598, −9.596038951304247, −8.835245534111639, −8.046664398200418, −7.886734755094118, −6.863284033059460, −6.657512142319874, −6.186907504599913, −5.571175062936742, −5.065134560684121, −4.494988120281985, −3.871158626763223, −3.511727583087957, −2.702086999289321, −2.028261063123546, −1.102362433690131, −0.8039715926571409, 0.8039715926571409, 1.102362433690131, 2.028261063123546, 2.702086999289321, 3.511727583087957, 3.871158626763223, 4.494988120281985, 5.065134560684121, 5.571175062936742, 6.186907504599913, 6.657512142319874, 6.863284033059460, 7.886734755094118, 8.046664398200418, 8.835245534111639, 9.596038951304247, 9.734431530512598, 10.57137091168629, 10.95852739231854, 11.42437642734453, 11.92688390884453, 12.37622710560358, 12.66366044476730, 13.36952543631633, 13.71915261648579

Graph of the $Z$-function along the critical line