Properties

Label 2-95550-1.1-c1-0-129
Degree $2$
Conductor $95550$
Sign $1$
Analytic cond. $762.970$
Root an. cond. $27.6219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 8-s + 9-s + 4·11-s + 12-s + 13-s + 16-s − 5·17-s + 18-s + 7·19-s + 4·22-s + 8·23-s + 24-s + 26-s + 27-s + 2·29-s − 2·31-s + 32-s + 4·33-s − 5·34-s + 36-s − 6·37-s + 7·38-s + 39-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 1.20·11-s + 0.288·12-s + 0.277·13-s + 1/4·16-s − 1.21·17-s + 0.235·18-s + 1.60·19-s + 0.852·22-s + 1.66·23-s + 0.204·24-s + 0.196·26-s + 0.192·27-s + 0.371·29-s − 0.359·31-s + 0.176·32-s + 0.696·33-s − 0.857·34-s + 1/6·36-s − 0.986·37-s + 1.13·38-s + 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95550\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(762.970\)
Root analytic conductor: \(27.6219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 95550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.232712098\)
\(L(\frac12)\) \(\approx\) \(7.232712098\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 11 T + p T^{2} \) 1.41.l
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 - 17 T + p T^{2} \) 1.83.ar
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.78082222641610, −13.34503595805556, −13.06696618893213, −12.31832002547594, −11.89311676070717, −11.39919490397887, −11.07774894005817, −10.31925903344786, −9.882796064408092, −9.177803565971495, −8.817652657973198, −8.495444427267291, −7.584017392045970, −7.031494905889885, −6.851572360155213, −6.249162719015180, −5.333487998968687, −5.170974757448183, −4.309133228954781, −3.894598365992031, −3.288827366195551, −2.841832087895961, −2.051770948334541, −1.396281124533260, −0.7625129754365079, 0.7625129754365079, 1.396281124533260, 2.051770948334541, 2.841832087895961, 3.288827366195551, 3.894598365992031, 4.309133228954781, 5.170974757448183, 5.333487998968687, 6.249162719015180, 6.851572360155213, 7.031494905889885, 7.584017392045970, 8.495444427267291, 8.817652657973198, 9.177803565971495, 9.882796064408092, 10.31925903344786, 11.07774894005817, 11.39919490397887, 11.89311676070717, 12.31832002547594, 13.06696618893213, 13.34503595805556, 13.78082222641610

Graph of the $Z$-function along the critical line