L(s) = 1 | + (−1.22 + 0.707i)2-s + (1.72 + 0.190i)3-s + (0.999 − 1.73i)4-s + (−1.00 − 0.583i)5-s + (−2.24 + 0.984i)6-s + (−0.658 − 1.14i)7-s + 2.82i·8-s + (2.92 + 0.654i)9-s + 1.64·10-s + (2.05 − 2.79i)12-s + (1.80 − 3.12i)13-s + (1.61 + 0.931i)14-s + (−1.62 − 1.19i)15-s + (−2.00 − 3.46i)16-s − 1.16i·17-s + (−4.04 + 1.26i)18-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.499i)2-s + (0.993 + 0.109i)3-s + (0.499 − 0.866i)4-s + (−0.451 − 0.260i)5-s + (−0.915 + 0.401i)6-s + (−0.248 − 0.431i)7-s + 0.999i·8-s + (0.975 + 0.218i)9-s + 0.521·10-s + (0.592 − 0.805i)12-s + (0.499 − 0.866i)13-s + (0.431 + 0.248i)14-s + (−0.420 − 0.308i)15-s + (−0.500 − 0.866i)16-s − 0.283i·17-s + (−0.954 + 0.298i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.842 + 0.538i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.842 + 0.538i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.26476 - 0.369877i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.26476 - 0.369877i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.22 - 0.707i)T \) |
| 3 | \( 1 + (-1.72 - 0.190i)T \) |
| 13 | \( 1 + (-1.80 + 3.12i)T \) |
good | 5 | \( 1 + (1.00 + 0.583i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.658 + 1.14i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 1.16iT - 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.87 + 3.24i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 5.39T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.03 + 5.25i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.79 + 2.18i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 2.75iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.898091512395522724408259541528, −8.983489740582713139566230961965, −8.279597550781968060719363435123, −7.70694207493627705407125418309, −6.91990931087476347909942764455, −5.85291736484995007241864631375, −4.63011148217459124471915299906, −3.53523283986068281858260919315, −2.31587159292366629406371772272, −0.789660692081744442248621593889,
1.45162459807940639333613803378, 2.59864309906591456718229649342, 3.49447748740689687559676771777, 4.35422245813665452664938809296, 6.20593128290023400234563047284, 7.07058437119085900170574483855, 7.83271899756069499698239570830, 8.598443500601046752753892597220, 9.238284436720928160560506257693, 9.906670985013756800543417077429