L(s) = 1 | + (1 − i)2-s − 2i·4-s + (2.54 + 2.54i)5-s + (2.54 − 2.54i)7-s + (−2 − 2i)8-s + 5.09·10-s + (−1 − i)11-s + (−2.54 − 2.54i)13-s − 5.09i·14-s − 4·16-s + 3i·17-s + (2 − 2i)19-s + (5.09 − 5.09i)20-s − 2·22-s + 5.09·23-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s − i·4-s + (1.14 + 1.14i)5-s + (0.963 − 0.963i)7-s + (−0.707 − 0.707i)8-s + 1.61·10-s + (−0.301 − 0.301i)11-s + (−0.707 − 0.707i)13-s − 1.36i·14-s − 16-s + 0.727i·17-s + (0.458 − 0.458i)19-s + (1.14 − 1.14i)20-s − 0.426·22-s + 1.06·23-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(0.289+0.957i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(0.289+0.957i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
0.289+0.957i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(811,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), 0.289+0.957i)
|
Particular Values
L(1) |
≈ |
2.33683−1.73406i |
L(21) |
≈ |
2.33683−1.73406i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1+i)T |
| 3 | 1 |
| 13 | 1+(2.54+2.54i)T |
good | 5 | 1+(−2.54−2.54i)T+5iT2 |
| 7 | 1+(−2.54+2.54i)T−7iT2 |
| 11 | 1+(1+i)T+11iT2 |
| 17 | 1−3iT−17T2 |
| 19 | 1+(−2+2i)T−19iT2 |
| 23 | 1−5.09T+23T2 |
| 29 | 1+5.09iT−29T2 |
| 31 | 1+(−5.09−5.09i)T+31iT2 |
| 37 | 1+(−2.54+2.54i)T−37iT2 |
| 41 | 1+(6−6i)T−41iT2 |
| 43 | 1+iT−43T2 |
| 47 | 1+(2.54−2.54i)T−47iT2 |
| 53 | 1−5.09iT−53T2 |
| 59 | 1+(8+8i)T+59iT2 |
| 61 | 1−61T2 |
| 67 | 1+(−3+3i)T−67iT2 |
| 71 | 1+(−7.64−7.64i)T+71iT2 |
| 73 | 1+(6+6i)T+73iT2 |
| 79 | 1−5.09iT−79T2 |
| 83 | 1+(5−5i)T−83iT2 |
| 89 | 1+(−2−2i)T+89iT2 |
| 97 | 1+(7−7i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12966773014694335943590476120, −9.557353044162453250250627797339, −8.142846438640600119715787099806, −7.11184405366992576233665452012, −6.33738263526808625532998095193, −5.37097271656677812342122588842, −4.60704097818432399880515948968, −3.26888033588431467602705817501, −2.48765451709671433120912480656, −1.25558492530026760144186621694,
1.74750822922777253876146994724, 2.74035986022406899856085015498, 4.52823294538890658032763869976, 5.11849672562400602854232721136, 5.55827311868999934229248287371, 6.67370875336032050667200054176, 7.68209547190769230461329148660, 8.619512165212573419724487081709, 9.122256044269451672589827430802, 9.937949912302899723180063404412