L(s) = 1 | + (1 + i)2-s + 2i·4-s + (2.54 − 2.54i)5-s + (2.54 + 2.54i)7-s + (−2 + 2i)8-s + 5.09·10-s + (−1 + i)11-s + (−2.54 + 2.54i)13-s + 5.09i·14-s − 4·16-s − 3i·17-s + (2 + 2i)19-s + (5.09 + 5.09i)20-s − 2·22-s + 5.09·23-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + i·4-s + (1.14 − 1.14i)5-s + (0.963 + 0.963i)7-s + (−0.707 + 0.707i)8-s + 1.61·10-s + (−0.301 + 0.301i)11-s + (−0.707 + 0.707i)13-s + 1.36i·14-s − 16-s − 0.727i·17-s + (0.458 + 0.458i)19-s + (1.14 + 1.14i)20-s − 0.426·22-s + 1.06·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.289 - 0.957i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.289 - 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.33683 + 1.73406i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.33683 + 1.73406i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (2.54 - 2.54i)T \) |
good | 5 | \( 1 + (-2.54 + 2.54i)T - 5iT^{2} \) |
| 7 | \( 1 + (-2.54 - 2.54i)T + 7iT^{2} \) |
| 11 | \( 1 + (1 - i)T - 11iT^{2} \) |
| 17 | \( 1 + 3iT - 17T^{2} \) |
| 19 | \( 1 + (-2 - 2i)T + 19iT^{2} \) |
| 23 | \( 1 - 5.09T + 23T^{2} \) |
| 29 | \( 1 - 5.09iT - 29T^{2} \) |
| 31 | \( 1 + (-5.09 + 5.09i)T - 31iT^{2} \) |
| 37 | \( 1 + (-2.54 - 2.54i)T + 37iT^{2} \) |
| 41 | \( 1 + (6 + 6i)T + 41iT^{2} \) |
| 43 | \( 1 - iT - 43T^{2} \) |
| 47 | \( 1 + (2.54 + 2.54i)T + 47iT^{2} \) |
| 53 | \( 1 + 5.09iT - 53T^{2} \) |
| 59 | \( 1 + (8 - 8i)T - 59iT^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + (-3 - 3i)T + 67iT^{2} \) |
| 71 | \( 1 + (-7.64 + 7.64i)T - 71iT^{2} \) |
| 73 | \( 1 + (6 - 6i)T - 73iT^{2} \) |
| 79 | \( 1 + 5.09iT - 79T^{2} \) |
| 83 | \( 1 + (5 + 5i)T + 83iT^{2} \) |
| 89 | \( 1 + (-2 + 2i)T - 89iT^{2} \) |
| 97 | \( 1 + (7 + 7i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.937949912302899723180063404412, −9.122256044269451672589827430802, −8.619512165212573419724487081709, −7.68209547190769230461329148660, −6.67370875336032050667200054176, −5.55827311868999934229248287371, −5.11849672562400602854232721136, −4.52823294538890658032763869976, −2.74035986022406899856085015498, −1.74750822922777253876146994724,
1.25558492530026760144186621694, 2.48765451709671433120912480656, 3.26888033588431467602705817501, 4.60704097818432399880515948968, 5.37097271656677812342122588842, 6.33738263526808625532998095193, 7.11184405366992576233665452012, 8.142846438640600119715787099806, 9.557353044162453250250627797339, 10.12966773014694335943590476120