L(s) = 1 | + i·2-s − i·3-s − 4-s + (0.605 + 2.15i)5-s + 6-s + 2i·7-s − i·8-s − 9-s + (−2.15 + 0.605i)10-s + 5.21·11-s + i·12-s − 0.789i·13-s − 2·14-s + (2.15 − 0.605i)15-s + 16-s − 0.115i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.577i·3-s − 0.5·4-s + (0.270 + 0.962i)5-s + 0.408·6-s + 0.755i·7-s − 0.353i·8-s − 0.333·9-s + (−0.680 + 0.191i)10-s + 1.57·11-s + 0.288i·12-s − 0.219i·13-s − 0.534·14-s + (0.555 − 0.156i)15-s + 0.250·16-s − 0.0279i·17-s + ⋯ |
Λ(s)=(=(930s/2ΓC(s)L(s)(−0.270−0.962i)Λ(2−s)
Λ(s)=(=(930s/2ΓC(s+1/2)L(s)(−0.270−0.962i)Λ(1−s)
Degree: |
2 |
Conductor: |
930
= 2⋅3⋅5⋅31
|
Sign: |
−0.270−0.962i
|
Analytic conductor: |
7.42608 |
Root analytic conductor: |
2.72508 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ930(559,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 930, ( :1/2), −0.270−0.962i)
|
Particular Values
L(1) |
≈ |
0.929058+1.22621i |
L(21) |
≈ |
0.929058+1.22621i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1+iT |
| 5 | 1+(−0.605−2.15i)T |
| 31 | 1+T |
good | 7 | 1−2iT−7T2 |
| 11 | 1−5.21T+11T2 |
| 13 | 1+0.789iT−13T2 |
| 17 | 1+0.115iT−17T2 |
| 19 | 1+0.115T+19T2 |
| 23 | 1−4.42iT−23T2 |
| 29 | 1+4.42T+29T2 |
| 37 | 1−6.61iT−37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1−8.61iT−43T2 |
| 47 | 1−0.115iT−47T2 |
| 53 | 1−0.190iT−53T2 |
| 59 | 1−4.19T+59T2 |
| 61 | 1−12.4T+61T2 |
| 67 | 1−5.82iT−67T2 |
| 71 | 1+13.8T+71T2 |
| 73 | 1−10.8iT−73T2 |
| 79 | 1+2.30T+79T2 |
| 83 | 1+15.1iT−83T2 |
| 89 | 1−2.23T+89T2 |
| 97 | 1+9.21iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.08306726759127149652436084652, −9.338121325944569389627327126008, −8.601683032687253795659550243411, −7.56655818534354642520834219571, −6.86196237297376117471208480274, −6.14729178059506032022686174371, −5.49569378576851641124442416441, −4.01845292749549910138937693410, −2.94188179586906768208890435097, −1.57738892623066139293423674829,
0.78776609613215060268633625533, 2.04695849668419524796122432955, 3.77988037861326749413454058666, 4.15923503549313541264775914404, 5.17898751134358155285796112113, 6.22156536663110368332045121950, 7.35461894735942099701605310397, 8.627068987869605110186483465195, 9.078755497866409856467530079804, 9.809777742966365924996867433581