L(s) = 1 | − i·2-s + i·3-s − 4-s + (0.605 − 2.15i)5-s + 6-s − 2i·7-s + i·8-s − 9-s + (−2.15 − 0.605i)10-s + 5.21·11-s − i·12-s + 0.789i·13-s − 2·14-s + (2.15 + 0.605i)15-s + 16-s + 0.115i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.577i·3-s − 0.5·4-s + (0.270 − 0.962i)5-s + 0.408·6-s − 0.755i·7-s + 0.353i·8-s − 0.333·9-s + (−0.680 − 0.191i)10-s + 1.57·11-s − 0.288i·12-s + 0.219i·13-s − 0.534·14-s + (0.555 + 0.156i)15-s + 0.250·16-s + 0.0279i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.270 + 0.962i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.270 + 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.929058 - 1.22621i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.929058 - 1.22621i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + (-0.605 + 2.15i)T \) |
| 31 | \( 1 + T \) |
good | 7 | \( 1 + 2iT - 7T^{2} \) |
| 11 | \( 1 - 5.21T + 11T^{2} \) |
| 13 | \( 1 - 0.789iT - 13T^{2} \) |
| 17 | \( 1 - 0.115iT - 17T^{2} \) |
| 19 | \( 1 + 0.115T + 19T^{2} \) |
| 23 | \( 1 + 4.42iT - 23T^{2} \) |
| 29 | \( 1 + 4.42T + 29T^{2} \) |
| 37 | \( 1 + 6.61iT - 37T^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 + 8.61iT - 43T^{2} \) |
| 47 | \( 1 + 0.115iT - 47T^{2} \) |
| 53 | \( 1 + 0.190iT - 53T^{2} \) |
| 59 | \( 1 - 4.19T + 59T^{2} \) |
| 61 | \( 1 - 12.4T + 61T^{2} \) |
| 67 | \( 1 + 5.82iT - 67T^{2} \) |
| 71 | \( 1 + 13.8T + 71T^{2} \) |
| 73 | \( 1 + 10.8iT - 73T^{2} \) |
| 79 | \( 1 + 2.30T + 79T^{2} \) |
| 83 | \( 1 - 15.1iT - 83T^{2} \) |
| 89 | \( 1 - 2.23T + 89T^{2} \) |
| 97 | \( 1 - 9.21iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.809777742966365924996867433581, −9.078755497866409856467530079804, −8.627068987869605110186483465195, −7.35461894735942099701605310397, −6.22156536663110368332045121950, −5.17898751134358155285796112113, −4.15923503549313541264775914404, −3.77988037861326749413454058666, −2.04695849668419524796122432955, −0.78776609613215060268633625533,
1.57738892623066139293423674829, 2.94188179586906768208890435097, 4.01845292749549910138937693410, 5.49569378576851641124442416441, 6.14729178059506032022686174371, 6.86196237297376117471208480274, 7.56655818534354642520834219571, 8.601683032687253795659550243411, 9.338121325944569389627327126008, 10.08306726759127149652436084652