Properties

Label 2-9280-1.1-c1-0-116
Degree $2$
Conductor $9280$
Sign $1$
Analytic cond. $74.1011$
Root an. cond. $8.60820$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.08·3-s + 5-s − 3.25·7-s + 1.36·9-s + 5.61·11-s + 2.90·13-s + 2.08·15-s + 5.25·17-s + 4.99·19-s − 6.79·21-s + 7.72·23-s + 25-s − 3.41·27-s − 29-s − 4.73·31-s + 11.7·33-s − 3.25·35-s + 6.62·37-s + 6.06·39-s − 4.43·41-s − 4.30·43-s + 1.36·45-s − 2.19·47-s + 3.57·49-s + 10.9·51-s − 5.81·53-s + 5.61·55-s + ⋯
L(s)  = 1  + 1.20·3-s + 0.447·5-s − 1.22·7-s + 0.454·9-s + 1.69·11-s + 0.805·13-s + 0.539·15-s + 1.27·17-s + 1.14·19-s − 1.48·21-s + 1.60·23-s + 0.200·25-s − 0.657·27-s − 0.185·29-s − 0.850·31-s + 2.04·33-s − 0.549·35-s + 1.08·37-s + 0.971·39-s − 0.692·41-s − 0.656·43-s + 0.203·45-s − 0.319·47-s + 0.511·49-s + 1.53·51-s − 0.798·53-s + 0.757·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9280\)    =    \(2^{6} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(74.1011\)
Root analytic conductor: \(8.60820\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.062600846\)
\(L(\frac12)\) \(\approx\) \(4.062600846\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 + T \)
good3 \( 1 - 2.08T + 3T^{2} \)
7 \( 1 + 3.25T + 7T^{2} \)
11 \( 1 - 5.61T + 11T^{2} \)
13 \( 1 - 2.90T + 13T^{2} \)
17 \( 1 - 5.25T + 17T^{2} \)
19 \( 1 - 4.99T + 19T^{2} \)
23 \( 1 - 7.72T + 23T^{2} \)
31 \( 1 + 4.73T + 31T^{2} \)
37 \( 1 - 6.62T + 37T^{2} \)
41 \( 1 + 4.43T + 41T^{2} \)
43 \( 1 + 4.30T + 43T^{2} \)
47 \( 1 + 2.19T + 47T^{2} \)
53 \( 1 + 5.81T + 53T^{2} \)
59 \( 1 - 8.90T + 59T^{2} \)
61 \( 1 + 13.2T + 61T^{2} \)
67 \( 1 + 12.1T + 67T^{2} \)
71 \( 1 + 1.31T + 71T^{2} \)
73 \( 1 - 5.17T + 73T^{2} \)
79 \( 1 - 11.5T + 79T^{2} \)
83 \( 1 + 2.05T + 83T^{2} \)
89 \( 1 - 2.17T + 89T^{2} \)
97 \( 1 - 12.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.67800962411570057105138031249, −7.09747296425966522272810614223, −6.35350241147307051092349724755, −5.87030940916234807335509434386, −4.92842583364031487868816045646, −3.75597269149834854600535351299, −3.34736579822146101331832302182, −2.96758611818389382385256044361, −1.70079701936075546483232445759, −0.990280917597518757638647771884, 0.990280917597518757638647771884, 1.70079701936075546483232445759, 2.96758611818389382385256044361, 3.34736579822146101331832302182, 3.75597269149834854600535351299, 4.92842583364031487868816045646, 5.87030940916234807335509434386, 6.35350241147307051092349724755, 7.09747296425966522272810614223, 7.67800962411570057105138031249

Graph of the $Z$-function along the critical line