Properties

Label 9280.2.a.ck.1.4
Level $9280$
Weight $2$
Character 9280.1
Self dual yes
Analytic conductor $74.101$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9280,2,Mod(1,9280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9280.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9280 = 2^{6} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9280.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,1,0,5,0,7,0,12,0,10,0,-3,0,1,0,3,0,-2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.1011730757\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.3145252.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 11x^{3} + 9x^{2} + 22x - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1160)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.90462\) of defining polynomial
Character \(\chi\) \(=\) 9280.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.08906 q^{3} +1.00000 q^{5} -3.25238 q^{7} +1.36419 q^{9} +5.61657 q^{11} +2.90462 q^{13} +2.08906 q^{15} +5.25238 q^{17} +4.99368 q^{19} -6.79443 q^{21} +7.72018 q^{23} +1.00000 q^{25} -3.41732 q^{27} -1.00000 q^{29} -4.73499 q^{31} +11.7334 q^{33} -3.25238 q^{35} +6.62480 q^{37} +6.06794 q^{39} -4.43213 q^{41} -4.30286 q^{43} +1.36419 q^{45} -2.19267 q^{47} +3.57799 q^{49} +10.9726 q^{51} -5.81394 q^{53} +5.61657 q^{55} +10.4321 q^{57} +8.90462 q^{59} -13.2313 q^{61} -4.43686 q^{63} +2.90462 q^{65} -12.1800 q^{67} +16.1279 q^{69} -1.31840 q^{71} +5.17974 q^{73} +2.08906 q^{75} -18.2672 q^{77} +11.5294 q^{79} -11.2316 q^{81} -2.05809 q^{83} +5.25238 q^{85} -2.08906 q^{87} +2.17813 q^{89} -9.44694 q^{91} -9.89169 q^{93} +4.99368 q^{95} +12.9627 q^{97} +7.66205 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{3} + 5 q^{5} + 7 q^{7} + 12 q^{9} + 10 q^{11} - 3 q^{13} + q^{15} + 3 q^{17} - 2 q^{19} - 4 q^{21} + 13 q^{23} + 5 q^{25} + 4 q^{27} - 5 q^{29} + 7 q^{31} + 12 q^{33} + 7 q^{35} - 10 q^{37} - q^{39}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.08906 1.20612 0.603061 0.797695i \(-0.293948\pi\)
0.603061 + 0.797695i \(0.293948\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −3.25238 −1.22928 −0.614642 0.788806i \(-0.710700\pi\)
−0.614642 + 0.788806i \(0.710700\pi\)
\(8\) 0 0
\(9\) 1.36419 0.454729
\(10\) 0 0
\(11\) 5.61657 1.69346 0.846730 0.532023i \(-0.178568\pi\)
0.846730 + 0.532023i \(0.178568\pi\)
\(12\) 0 0
\(13\) 2.90462 0.805597 0.402798 0.915289i \(-0.368038\pi\)
0.402798 + 0.915289i \(0.368038\pi\)
\(14\) 0 0
\(15\) 2.08906 0.539394
\(16\) 0 0
\(17\) 5.25238 1.27389 0.636945 0.770909i \(-0.280198\pi\)
0.636945 + 0.770909i \(0.280198\pi\)
\(18\) 0 0
\(19\) 4.99368 1.14563 0.572815 0.819685i \(-0.305851\pi\)
0.572815 + 0.819685i \(0.305851\pi\)
\(20\) 0 0
\(21\) −6.79443 −1.48267
\(22\) 0 0
\(23\) 7.72018 1.60977 0.804884 0.593432i \(-0.202227\pi\)
0.804884 + 0.593432i \(0.202227\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −3.41732 −0.657663
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −4.73499 −0.850429 −0.425215 0.905093i \(-0.639801\pi\)
−0.425215 + 0.905093i \(0.639801\pi\)
\(32\) 0 0
\(33\) 11.7334 2.04252
\(34\) 0 0
\(35\) −3.25238 −0.549753
\(36\) 0 0
\(37\) 6.62480 1.08911 0.544555 0.838725i \(-0.316698\pi\)
0.544555 + 0.838725i \(0.316698\pi\)
\(38\) 0 0
\(39\) 6.06794 0.971648
\(40\) 0 0
\(41\) −4.43213 −0.692182 −0.346091 0.938201i \(-0.612491\pi\)
−0.346091 + 0.938201i \(0.612491\pi\)
\(42\) 0 0
\(43\) −4.30286 −0.656180 −0.328090 0.944646i \(-0.606405\pi\)
−0.328090 + 0.944646i \(0.606405\pi\)
\(44\) 0 0
\(45\) 1.36419 0.203361
\(46\) 0 0
\(47\) −2.19267 −0.319834 −0.159917 0.987130i \(-0.551123\pi\)
−0.159917 + 0.987130i \(0.551123\pi\)
\(48\) 0 0
\(49\) 3.57799 0.511141
\(50\) 0 0
\(51\) 10.9726 1.53647
\(52\) 0 0
\(53\) −5.81394 −0.798606 −0.399303 0.916819i \(-0.630748\pi\)
−0.399303 + 0.916819i \(0.630748\pi\)
\(54\) 0 0
\(55\) 5.61657 0.757338
\(56\) 0 0
\(57\) 10.4321 1.38177
\(58\) 0 0
\(59\) 8.90462 1.15928 0.579641 0.814872i \(-0.303193\pi\)
0.579641 + 0.814872i \(0.303193\pi\)
\(60\) 0 0
\(61\) −13.2313 −1.69409 −0.847044 0.531522i \(-0.821620\pi\)
−0.847044 + 0.531522i \(0.821620\pi\)
\(62\) 0 0
\(63\) −4.43686 −0.558992
\(64\) 0 0
\(65\) 2.90462 0.360274
\(66\) 0 0
\(67\) −12.1800 −1.48803 −0.744015 0.668163i \(-0.767081\pi\)
−0.744015 + 0.668163i \(0.767081\pi\)
\(68\) 0 0
\(69\) 16.1279 1.94158
\(70\) 0 0
\(71\) −1.31840 −0.156466 −0.0782329 0.996935i \(-0.524928\pi\)
−0.0782329 + 0.996935i \(0.524928\pi\)
\(72\) 0 0
\(73\) 5.17974 0.606243 0.303122 0.952952i \(-0.401971\pi\)
0.303122 + 0.952952i \(0.401971\pi\)
\(74\) 0 0
\(75\) 2.08906 0.241224
\(76\) 0 0
\(77\) −18.2672 −2.08174
\(78\) 0 0
\(79\) 11.5294 1.29716 0.648581 0.761146i \(-0.275363\pi\)
0.648581 + 0.761146i \(0.275363\pi\)
\(80\) 0 0
\(81\) −11.2316 −1.24795
\(82\) 0 0
\(83\) −2.05809 −0.225905 −0.112952 0.993600i \(-0.536031\pi\)
−0.112952 + 0.993600i \(0.536031\pi\)
\(84\) 0 0
\(85\) 5.25238 0.569701
\(86\) 0 0
\(87\) −2.08906 −0.223971
\(88\) 0 0
\(89\) 2.17813 0.230881 0.115441 0.993314i \(-0.463172\pi\)
0.115441 + 0.993314i \(0.463172\pi\)
\(90\) 0 0
\(91\) −9.44694 −0.990308
\(92\) 0 0
\(93\) −9.89169 −1.02572
\(94\) 0 0
\(95\) 4.99368 0.512341
\(96\) 0 0
\(97\) 12.9627 1.31616 0.658082 0.752946i \(-0.271368\pi\)
0.658082 + 0.752946i \(0.271368\pi\)
\(98\) 0 0
\(99\) 7.66205 0.770065
\(100\) 0 0
\(101\) 2.28174 0.227041 0.113521 0.993536i \(-0.463787\pi\)
0.113521 + 0.993536i \(0.463787\pi\)
\(102\) 0 0
\(103\) 8.56156 0.843595 0.421798 0.906690i \(-0.361399\pi\)
0.421798 + 0.906690i \(0.361399\pi\)
\(104\) 0 0
\(105\) −6.79443 −0.663069
\(106\) 0 0
\(107\) 16.0746 1.55399 0.776993 0.629509i \(-0.216744\pi\)
0.776993 + 0.629509i \(0.216744\pi\)
\(108\) 0 0
\(109\) −5.55524 −0.532096 −0.266048 0.963960i \(-0.585718\pi\)
−0.266048 + 0.963960i \(0.585718\pi\)
\(110\) 0 0
\(111\) 13.8396 1.31360
\(112\) 0 0
\(113\) −5.02466 −0.472680 −0.236340 0.971670i \(-0.575948\pi\)
−0.236340 + 0.971670i \(0.575948\pi\)
\(114\) 0 0
\(115\) 7.72018 0.719910
\(116\) 0 0
\(117\) 3.96245 0.366328
\(118\) 0 0
\(119\) −17.0827 −1.56597
\(120\) 0 0
\(121\) 20.5458 1.86780
\(122\) 0 0
\(123\) −9.25899 −0.834855
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −22.2901 −1.97792 −0.988962 0.148171i \(-0.952661\pi\)
−0.988962 + 0.148171i \(0.952661\pi\)
\(128\) 0 0
\(129\) −8.98895 −0.791433
\(130\) 0 0
\(131\) 2.27794 0.199025 0.0995123 0.995036i \(-0.468272\pi\)
0.0995123 + 0.995036i \(0.468272\pi\)
\(132\) 0 0
\(133\) −16.2414 −1.40831
\(134\) 0 0
\(135\) −3.41732 −0.294116
\(136\) 0 0
\(137\) −13.4535 −1.14941 −0.574707 0.818359i \(-0.694884\pi\)
−0.574707 + 0.818359i \(0.694884\pi\)
\(138\) 0 0
\(139\) 21.1784 1.79633 0.898165 0.439658i \(-0.144900\pi\)
0.898165 + 0.439658i \(0.144900\pi\)
\(140\) 0 0
\(141\) −4.58063 −0.385759
\(142\) 0 0
\(143\) 16.3140 1.36425
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 0 0
\(147\) 7.47464 0.616498
\(148\) 0 0
\(149\) 2.20722 0.180822 0.0904112 0.995905i \(-0.471182\pi\)
0.0904112 + 0.995905i \(0.471182\pi\)
\(150\) 0 0
\(151\) 23.4839 1.91109 0.955546 0.294841i \(-0.0952666\pi\)
0.955546 + 0.294841i \(0.0952666\pi\)
\(152\) 0 0
\(153\) 7.16523 0.579275
\(154\) 0 0
\(155\) −4.73499 −0.380323
\(156\) 0 0
\(157\) 21.0278 1.67820 0.839102 0.543974i \(-0.183081\pi\)
0.839102 + 0.543974i \(0.183081\pi\)
\(158\) 0 0
\(159\) −12.1457 −0.963216
\(160\) 0 0
\(161\) −25.1090 −1.97886
\(162\) 0 0
\(163\) −14.5489 −1.13956 −0.569780 0.821797i \(-0.692972\pi\)
−0.569780 + 0.821797i \(0.692972\pi\)
\(164\) 0 0
\(165\) 11.7334 0.913442
\(166\) 0 0
\(167\) −4.57079 −0.353698 −0.176849 0.984238i \(-0.556590\pi\)
−0.176849 + 0.984238i \(0.556590\pi\)
\(168\) 0 0
\(169\) −4.56318 −0.351014
\(170\) 0 0
\(171\) 6.81232 0.520951
\(172\) 0 0
\(173\) −17.1599 −1.30464 −0.652322 0.757942i \(-0.726205\pi\)
−0.652322 + 0.757942i \(0.726205\pi\)
\(174\) 0 0
\(175\) −3.25238 −0.245857
\(176\) 0 0
\(177\) 18.6023 1.39824
\(178\) 0 0
\(179\) −13.5445 −1.01236 −0.506182 0.862427i \(-0.668943\pi\)
−0.506182 + 0.862427i \(0.668943\pi\)
\(180\) 0 0
\(181\) 1.55524 0.115600 0.0578002 0.998328i \(-0.481591\pi\)
0.0578002 + 0.998328i \(0.481591\pi\)
\(182\) 0 0
\(183\) −27.6409 −2.04328
\(184\) 0 0
\(185\) 6.62480 0.487065
\(186\) 0 0
\(187\) 29.5004 2.15728
\(188\) 0 0
\(189\) 11.1144 0.808455
\(190\) 0 0
\(191\) 6.05339 0.438008 0.219004 0.975724i \(-0.429719\pi\)
0.219004 + 0.975724i \(0.429719\pi\)
\(192\) 0 0
\(193\) −18.1397 −1.30572 −0.652861 0.757478i \(-0.726432\pi\)
−0.652861 + 0.757478i \(0.726432\pi\)
\(194\) 0 0
\(195\) 6.06794 0.434534
\(196\) 0 0
\(197\) −4.35026 −0.309943 −0.154972 0.987919i \(-0.549529\pi\)
−0.154972 + 0.987919i \(0.549529\pi\)
\(198\) 0 0
\(199\) −3.40997 −0.241726 −0.120863 0.992669i \(-0.538566\pi\)
−0.120863 + 0.992669i \(0.538566\pi\)
\(200\) 0 0
\(201\) −25.4449 −1.79474
\(202\) 0 0
\(203\) 3.25238 0.228272
\(204\) 0 0
\(205\) −4.43213 −0.309553
\(206\) 0 0
\(207\) 10.5318 0.732009
\(208\) 0 0
\(209\) 28.0474 1.94008
\(210\) 0 0
\(211\) −18.8371 −1.29680 −0.648399 0.761301i \(-0.724561\pi\)
−0.648399 + 0.761301i \(0.724561\pi\)
\(212\) 0 0
\(213\) −2.75423 −0.188717
\(214\) 0 0
\(215\) −4.30286 −0.293453
\(216\) 0 0
\(217\) 15.4000 1.04542
\(218\) 0 0
\(219\) 10.8208 0.731203
\(220\) 0 0
\(221\) 15.2562 1.02624
\(222\) 0 0
\(223\) 24.5844 1.64630 0.823148 0.567827i \(-0.192216\pi\)
0.823148 + 0.567827i \(0.192216\pi\)
\(224\) 0 0
\(225\) 1.36419 0.0909458
\(226\) 0 0
\(227\) 16.5193 1.09643 0.548213 0.836339i \(-0.315308\pi\)
0.548213 + 0.836339i \(0.315308\pi\)
\(228\) 0 0
\(229\) 6.08057 0.401815 0.200908 0.979610i \(-0.435611\pi\)
0.200908 + 0.979610i \(0.435611\pi\)
\(230\) 0 0
\(231\) −38.1614 −2.51084
\(232\) 0 0
\(233\) −1.78902 −0.117202 −0.0586012 0.998281i \(-0.518664\pi\)
−0.0586012 + 0.998281i \(0.518664\pi\)
\(234\) 0 0
\(235\) −2.19267 −0.143034
\(236\) 0 0
\(237\) 24.0857 1.56453
\(238\) 0 0
\(239\) −8.79725 −0.569047 −0.284523 0.958669i \(-0.591835\pi\)
−0.284523 + 0.958669i \(0.591835\pi\)
\(240\) 0 0
\(241\) 3.13840 0.202162 0.101081 0.994878i \(-0.467770\pi\)
0.101081 + 0.994878i \(0.467770\pi\)
\(242\) 0 0
\(243\) −13.2115 −0.847517
\(244\) 0 0
\(245\) 3.57799 0.228589
\(246\) 0 0
\(247\) 14.5048 0.922916
\(248\) 0 0
\(249\) −4.29948 −0.272469
\(250\) 0 0
\(251\) −9.27730 −0.585578 −0.292789 0.956177i \(-0.594583\pi\)
−0.292789 + 0.956177i \(0.594583\pi\)
\(252\) 0 0
\(253\) 43.3609 2.72608
\(254\) 0 0
\(255\) 10.9726 0.687128
\(256\) 0 0
\(257\) 6.80101 0.424235 0.212118 0.977244i \(-0.431964\pi\)
0.212118 + 0.977244i \(0.431964\pi\)
\(258\) 0 0
\(259\) −21.5464 −1.33883
\(260\) 0 0
\(261\) −1.36419 −0.0844411
\(262\) 0 0
\(263\) 7.10481 0.438101 0.219051 0.975713i \(-0.429704\pi\)
0.219051 + 0.975713i \(0.429704\pi\)
\(264\) 0 0
\(265\) −5.81394 −0.357147
\(266\) 0 0
\(267\) 4.55025 0.278471
\(268\) 0 0
\(269\) 20.4968 1.24971 0.624857 0.780739i \(-0.285157\pi\)
0.624857 + 0.780739i \(0.285157\pi\)
\(270\) 0 0
\(271\) 14.6646 0.890810 0.445405 0.895329i \(-0.353060\pi\)
0.445405 + 0.895329i \(0.353060\pi\)
\(272\) 0 0
\(273\) −19.7353 −1.19443
\(274\) 0 0
\(275\) 5.61657 0.338692
\(276\) 0 0
\(277\) 16.2710 0.977629 0.488814 0.872388i \(-0.337429\pi\)
0.488814 + 0.872388i \(0.337429\pi\)
\(278\) 0 0
\(279\) −6.45941 −0.386715
\(280\) 0 0
\(281\) 8.89804 0.530813 0.265406 0.964137i \(-0.414494\pi\)
0.265406 + 0.964137i \(0.414494\pi\)
\(282\) 0 0
\(283\) 3.61657 0.214983 0.107491 0.994206i \(-0.465718\pi\)
0.107491 + 0.994206i \(0.465718\pi\)
\(284\) 0 0
\(285\) 10.4321 0.617946
\(286\) 0 0
\(287\) 14.4150 0.850889
\(288\) 0 0
\(289\) 10.5875 0.622795
\(290\) 0 0
\(291\) 27.0799 1.58745
\(292\) 0 0
\(293\) 10.0442 0.586786 0.293393 0.955992i \(-0.405215\pi\)
0.293393 + 0.955992i \(0.405215\pi\)
\(294\) 0 0
\(295\) 8.90462 0.518447
\(296\) 0 0
\(297\) −19.1936 −1.11373
\(298\) 0 0
\(299\) 22.4242 1.29682
\(300\) 0 0
\(301\) 13.9945 0.806632
\(302\) 0 0
\(303\) 4.76669 0.273839
\(304\) 0 0
\(305\) −13.2313 −0.757620
\(306\) 0 0
\(307\) −7.79470 −0.444867 −0.222433 0.974948i \(-0.571400\pi\)
−0.222433 + 0.974948i \(0.571400\pi\)
\(308\) 0 0
\(309\) 17.8856 1.01748
\(310\) 0 0
\(311\) −22.2110 −1.25947 −0.629736 0.776810i \(-0.716837\pi\)
−0.629736 + 0.776810i \(0.716837\pi\)
\(312\) 0 0
\(313\) −0.173597 −0.00981231 −0.00490615 0.999988i \(-0.501562\pi\)
−0.00490615 + 0.999988i \(0.501562\pi\)
\(314\) 0 0
\(315\) −4.43686 −0.249989
\(316\) 0 0
\(317\) −9.81186 −0.551089 −0.275544 0.961288i \(-0.588858\pi\)
−0.275544 + 0.961288i \(0.588858\pi\)
\(318\) 0 0
\(319\) −5.61657 −0.314467
\(320\) 0 0
\(321\) 33.5808 1.87430
\(322\) 0 0
\(323\) 26.2287 1.45941
\(324\) 0 0
\(325\) 2.90462 0.161119
\(326\) 0 0
\(327\) −11.6053 −0.641772
\(328\) 0 0
\(329\) 7.13141 0.393167
\(330\) 0 0
\(331\) −8.41435 −0.462494 −0.231247 0.972895i \(-0.574281\pi\)
−0.231247 + 0.972895i \(0.574281\pi\)
\(332\) 0 0
\(333\) 9.03747 0.495250
\(334\) 0 0
\(335\) −12.1800 −0.665467
\(336\) 0 0
\(337\) 30.9215 1.68440 0.842200 0.539165i \(-0.181260\pi\)
0.842200 + 0.539165i \(0.181260\pi\)
\(338\) 0 0
\(339\) −10.4968 −0.570110
\(340\) 0 0
\(341\) −26.5944 −1.44017
\(342\) 0 0
\(343\) 11.1297 0.600947
\(344\) 0 0
\(345\) 16.1279 0.868299
\(346\) 0 0
\(347\) −28.1719 −1.51235 −0.756175 0.654370i \(-0.772934\pi\)
−0.756175 + 0.654370i \(0.772934\pi\)
\(348\) 0 0
\(349\) −20.5124 −1.09800 −0.549001 0.835822i \(-0.684992\pi\)
−0.549001 + 0.835822i \(0.684992\pi\)
\(350\) 0 0
\(351\) −9.92601 −0.529811
\(352\) 0 0
\(353\) 8.13135 0.432788 0.216394 0.976306i \(-0.430570\pi\)
0.216394 + 0.976306i \(0.430570\pi\)
\(354\) 0 0
\(355\) −1.31840 −0.0699737
\(356\) 0 0
\(357\) −35.6870 −1.88875
\(358\) 0 0
\(359\) 19.7802 1.04396 0.521979 0.852958i \(-0.325194\pi\)
0.521979 + 0.852958i \(0.325194\pi\)
\(360\) 0 0
\(361\) 5.93689 0.312468
\(362\) 0 0
\(363\) 42.9216 2.25280
\(364\) 0 0
\(365\) 5.17974 0.271120
\(366\) 0 0
\(367\) 23.6166 1.23277 0.616387 0.787443i \(-0.288596\pi\)
0.616387 + 0.787443i \(0.288596\pi\)
\(368\) 0 0
\(369\) −6.04625 −0.314755
\(370\) 0 0
\(371\) 18.9092 0.981714
\(372\) 0 0
\(373\) −14.8165 −0.767171 −0.383586 0.923505i \(-0.625311\pi\)
−0.383586 + 0.923505i \(0.625311\pi\)
\(374\) 0 0
\(375\) 2.08906 0.107879
\(376\) 0 0
\(377\) −2.90462 −0.149596
\(378\) 0 0
\(379\) 17.3803 0.892767 0.446384 0.894842i \(-0.352712\pi\)
0.446384 + 0.894842i \(0.352712\pi\)
\(380\) 0 0
\(381\) −46.5654 −2.38562
\(382\) 0 0
\(383\) 35.7445 1.82646 0.913230 0.407445i \(-0.133580\pi\)
0.913230 + 0.407445i \(0.133580\pi\)
\(384\) 0 0
\(385\) −18.2672 −0.930984
\(386\) 0 0
\(387\) −5.86991 −0.298384
\(388\) 0 0
\(389\) −31.5332 −1.59880 −0.799399 0.600801i \(-0.794849\pi\)
−0.799399 + 0.600801i \(0.794849\pi\)
\(390\) 0 0
\(391\) 40.5493 2.05067
\(392\) 0 0
\(393\) 4.75876 0.240048
\(394\) 0 0
\(395\) 11.5294 0.580108
\(396\) 0 0
\(397\) 10.4538 0.524662 0.262331 0.964978i \(-0.415509\pi\)
0.262331 + 0.964978i \(0.415509\pi\)
\(398\) 0 0
\(399\) −33.9293 −1.69859
\(400\) 0 0
\(401\) −16.2243 −0.810204 −0.405102 0.914272i \(-0.632764\pi\)
−0.405102 + 0.914272i \(0.632764\pi\)
\(402\) 0 0
\(403\) −13.7533 −0.685103
\(404\) 0 0
\(405\) −11.2316 −0.558100
\(406\) 0 0
\(407\) 37.2086 1.84436
\(408\) 0 0
\(409\) −30.2452 −1.49553 −0.747764 0.663964i \(-0.768873\pi\)
−0.747764 + 0.663964i \(0.768873\pi\)
\(410\) 0 0
\(411\) −28.1053 −1.38633
\(412\) 0 0
\(413\) −28.9612 −1.42509
\(414\) 0 0
\(415\) −2.05809 −0.101028
\(416\) 0 0
\(417\) 44.2431 2.16659
\(418\) 0 0
\(419\) 38.8437 1.89764 0.948819 0.315820i \(-0.102279\pi\)
0.948819 + 0.315820i \(0.102279\pi\)
\(420\) 0 0
\(421\) −11.6747 −0.568988 −0.284494 0.958678i \(-0.591826\pi\)
−0.284494 + 0.958678i \(0.591826\pi\)
\(422\) 0 0
\(423\) −2.99122 −0.145438
\(424\) 0 0
\(425\) 5.25238 0.254778
\(426\) 0 0
\(427\) 43.0331 2.08252
\(428\) 0 0
\(429\) 34.0810 1.64545
\(430\) 0 0
\(431\) −12.2943 −0.592196 −0.296098 0.955158i \(-0.595686\pi\)
−0.296098 + 0.955158i \(0.595686\pi\)
\(432\) 0 0
\(433\) −26.9426 −1.29478 −0.647389 0.762160i \(-0.724139\pi\)
−0.647389 + 0.762160i \(0.724139\pi\)
\(434\) 0 0
\(435\) −2.08906 −0.100163
\(436\) 0 0
\(437\) 38.5521 1.84420
\(438\) 0 0
\(439\) 28.5976 1.36489 0.682445 0.730937i \(-0.260917\pi\)
0.682445 + 0.730937i \(0.260917\pi\)
\(440\) 0 0
\(441\) 4.88104 0.232431
\(442\) 0 0
\(443\) 7.75303 0.368358 0.184179 0.982893i \(-0.441037\pi\)
0.184179 + 0.982893i \(0.441037\pi\)
\(444\) 0 0
\(445\) 2.17813 0.103253
\(446\) 0 0
\(447\) 4.61102 0.218094
\(448\) 0 0
\(449\) −28.4360 −1.34198 −0.670988 0.741468i \(-0.734130\pi\)
−0.670988 + 0.741468i \(0.734130\pi\)
\(450\) 0 0
\(451\) −24.8933 −1.17218
\(452\) 0 0
\(453\) 49.0594 2.30501
\(454\) 0 0
\(455\) −9.44694 −0.442879
\(456\) 0 0
\(457\) 34.3153 1.60520 0.802601 0.596516i \(-0.203449\pi\)
0.802601 + 0.596516i \(0.203449\pi\)
\(458\) 0 0
\(459\) −17.9491 −0.837790
\(460\) 0 0
\(461\) −9.15257 −0.426278 −0.213139 0.977022i \(-0.568369\pi\)
−0.213139 + 0.977022i \(0.568369\pi\)
\(462\) 0 0
\(463\) 38.4353 1.78624 0.893121 0.449817i \(-0.148511\pi\)
0.893121 + 0.449817i \(0.148511\pi\)
\(464\) 0 0
\(465\) −9.89169 −0.458716
\(466\) 0 0
\(467\) 27.1639 1.25699 0.628497 0.777812i \(-0.283670\pi\)
0.628497 + 0.777812i \(0.283670\pi\)
\(468\) 0 0
\(469\) 39.6141 1.82921
\(470\) 0 0
\(471\) 43.9285 2.02412
\(472\) 0 0
\(473\) −24.1673 −1.11121
\(474\) 0 0
\(475\) 4.99368 0.229126
\(476\) 0 0
\(477\) −7.93130 −0.363149
\(478\) 0 0
\(479\) −32.2993 −1.47579 −0.737896 0.674914i \(-0.764181\pi\)
−0.737896 + 0.674914i \(0.764181\pi\)
\(480\) 0 0
\(481\) 19.2425 0.877384
\(482\) 0 0
\(483\) −52.4542 −2.38675
\(484\) 0 0
\(485\) 12.9627 0.588606
\(486\) 0 0
\(487\) 6.60516 0.299308 0.149654 0.988738i \(-0.452184\pi\)
0.149654 + 0.988738i \(0.452184\pi\)
\(488\) 0 0
\(489\) −30.3936 −1.37445
\(490\) 0 0
\(491\) 12.6703 0.571802 0.285901 0.958259i \(-0.407707\pi\)
0.285901 + 0.958259i \(0.407707\pi\)
\(492\) 0 0
\(493\) −5.25238 −0.236555
\(494\) 0 0
\(495\) 7.66205 0.344384
\(496\) 0 0
\(497\) 4.28796 0.192341
\(498\) 0 0
\(499\) −26.7827 −1.19896 −0.599480 0.800390i \(-0.704626\pi\)
−0.599480 + 0.800390i \(0.704626\pi\)
\(500\) 0 0
\(501\) −9.54866 −0.426603
\(502\) 0 0
\(503\) −12.8042 −0.570912 −0.285456 0.958392i \(-0.592145\pi\)
−0.285456 + 0.958392i \(0.592145\pi\)
\(504\) 0 0
\(505\) 2.28174 0.101536
\(506\) 0 0
\(507\) −9.53277 −0.423365
\(508\) 0 0
\(509\) −35.9280 −1.59248 −0.796239 0.604982i \(-0.793180\pi\)
−0.796239 + 0.604982i \(0.793180\pi\)
\(510\) 0 0
\(511\) −16.8465 −0.745246
\(512\) 0 0
\(513\) −17.0650 −0.753438
\(514\) 0 0
\(515\) 8.56156 0.377267
\(516\) 0 0
\(517\) −12.3153 −0.541626
\(518\) 0 0
\(519\) −35.8482 −1.57356
\(520\) 0 0
\(521\) −39.1375 −1.71464 −0.857322 0.514781i \(-0.827873\pi\)
−0.857322 + 0.514781i \(0.827873\pi\)
\(522\) 0 0
\(523\) −0.0271758 −0.00118831 −0.000594157 1.00000i \(-0.500189\pi\)
−0.000594157 1.00000i \(0.500189\pi\)
\(524\) 0 0
\(525\) −6.79443 −0.296533
\(526\) 0 0
\(527\) −24.8700 −1.08335
\(528\) 0 0
\(529\) 36.6012 1.59135
\(530\) 0 0
\(531\) 12.1476 0.527160
\(532\) 0 0
\(533\) −12.8736 −0.557620
\(534\) 0 0
\(535\) 16.0746 0.694963
\(536\) 0 0
\(537\) −28.2953 −1.22103
\(538\) 0 0
\(539\) 20.0960 0.865596
\(540\) 0 0
\(541\) 0.693359 0.0298098 0.0149049 0.999889i \(-0.495255\pi\)
0.0149049 + 0.999889i \(0.495255\pi\)
\(542\) 0 0
\(543\) 3.24900 0.139428
\(544\) 0 0
\(545\) −5.55524 −0.237960
\(546\) 0 0
\(547\) 0.812323 0.0347324 0.0173662 0.999849i \(-0.494472\pi\)
0.0173662 + 0.999849i \(0.494472\pi\)
\(548\) 0 0
\(549\) −18.0499 −0.770352
\(550\) 0 0
\(551\) −4.99368 −0.212738
\(552\) 0 0
\(553\) −37.4981 −1.59458
\(554\) 0 0
\(555\) 13.8396 0.587460
\(556\) 0 0
\(557\) −17.0190 −0.721117 −0.360559 0.932737i \(-0.617414\pi\)
−0.360559 + 0.932737i \(0.617414\pi\)
\(558\) 0 0
\(559\) −12.4982 −0.528617
\(560\) 0 0
\(561\) 61.6281 2.60194
\(562\) 0 0
\(563\) −42.3393 −1.78439 −0.892195 0.451651i \(-0.850835\pi\)
−0.892195 + 0.451651i \(0.850835\pi\)
\(564\) 0 0
\(565\) −5.02466 −0.211389
\(566\) 0 0
\(567\) 36.5293 1.53409
\(568\) 0 0
\(569\) 31.4910 1.32017 0.660085 0.751191i \(-0.270520\pi\)
0.660085 + 0.751191i \(0.270520\pi\)
\(570\) 0 0
\(571\) 6.64123 0.277927 0.138963 0.990298i \(-0.455623\pi\)
0.138963 + 0.990298i \(0.455623\pi\)
\(572\) 0 0
\(573\) 12.6459 0.528291
\(574\) 0 0
\(575\) 7.72018 0.321954
\(576\) 0 0
\(577\) −23.7281 −0.987812 −0.493906 0.869515i \(-0.664431\pi\)
−0.493906 + 0.869515i \(0.664431\pi\)
\(578\) 0 0
\(579\) −37.8949 −1.57486
\(580\) 0 0
\(581\) 6.69370 0.277701
\(582\) 0 0
\(583\) −32.6544 −1.35241
\(584\) 0 0
\(585\) 3.96245 0.163827
\(586\) 0 0
\(587\) −2.15042 −0.0887575 −0.0443787 0.999015i \(-0.514131\pi\)
−0.0443787 + 0.999015i \(0.514131\pi\)
\(588\) 0 0
\(589\) −23.6450 −0.974277
\(590\) 0 0
\(591\) −9.08797 −0.373829
\(592\) 0 0
\(593\) 4.42649 0.181774 0.0908872 0.995861i \(-0.471030\pi\)
0.0908872 + 0.995861i \(0.471030\pi\)
\(594\) 0 0
\(595\) −17.0827 −0.700324
\(596\) 0 0
\(597\) −7.12365 −0.291551
\(598\) 0 0
\(599\) 35.5803 1.45377 0.726886 0.686758i \(-0.240967\pi\)
0.726886 + 0.686758i \(0.240967\pi\)
\(600\) 0 0
\(601\) −46.3708 −1.89150 −0.945752 0.324890i \(-0.894673\pi\)
−0.945752 + 0.324890i \(0.894673\pi\)
\(602\) 0 0
\(603\) −16.6159 −0.676650
\(604\) 0 0
\(605\) 20.5458 0.835308
\(606\) 0 0
\(607\) 10.9595 0.444834 0.222417 0.974952i \(-0.428605\pi\)
0.222417 + 0.974952i \(0.428605\pi\)
\(608\) 0 0
\(609\) 6.79443 0.275324
\(610\) 0 0
\(611\) −6.36889 −0.257658
\(612\) 0 0
\(613\) −20.8227 −0.841021 −0.420510 0.907288i \(-0.638149\pi\)
−0.420510 + 0.907288i \(0.638149\pi\)
\(614\) 0 0
\(615\) −9.25899 −0.373359
\(616\) 0 0
\(617\) −40.8665 −1.64522 −0.822612 0.568603i \(-0.807484\pi\)
−0.822612 + 0.568603i \(0.807484\pi\)
\(618\) 0 0
\(619\) −20.7890 −0.835581 −0.417790 0.908544i \(-0.637195\pi\)
−0.417790 + 0.908544i \(0.637195\pi\)
\(620\) 0 0
\(621\) −26.3823 −1.05869
\(622\) 0 0
\(623\) −7.08410 −0.283819
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 58.5928 2.33997
\(628\) 0 0
\(629\) 34.7960 1.38741
\(630\) 0 0
\(631\) 26.6350 1.06032 0.530161 0.847897i \(-0.322131\pi\)
0.530161 + 0.847897i \(0.322131\pi\)
\(632\) 0 0
\(633\) −39.3519 −1.56410
\(634\) 0 0
\(635\) −22.2901 −0.884554
\(636\) 0 0
\(637\) 10.3927 0.411773
\(638\) 0 0
\(639\) −1.79855 −0.0711496
\(640\) 0 0
\(641\) 22.8301 0.901735 0.450867 0.892591i \(-0.351115\pi\)
0.450867 + 0.892591i \(0.351115\pi\)
\(642\) 0 0
\(643\) −18.5395 −0.731128 −0.365564 0.930786i \(-0.619124\pi\)
−0.365564 + 0.930786i \(0.619124\pi\)
\(644\) 0 0
\(645\) −8.98895 −0.353940
\(646\) 0 0
\(647\) 23.0121 0.904701 0.452350 0.891840i \(-0.350586\pi\)
0.452350 + 0.891840i \(0.350586\pi\)
\(648\) 0 0
\(649\) 50.0134 1.96320
\(650\) 0 0
\(651\) 32.1716 1.26090
\(652\) 0 0
\(653\) 21.1467 0.827535 0.413768 0.910383i \(-0.364213\pi\)
0.413768 + 0.910383i \(0.364213\pi\)
\(654\) 0 0
\(655\) 2.27794 0.0890065
\(656\) 0 0
\(657\) 7.06614 0.275677
\(658\) 0 0
\(659\) −27.9257 −1.08783 −0.543916 0.839140i \(-0.683059\pi\)
−0.543916 + 0.839140i \(0.683059\pi\)
\(660\) 0 0
\(661\) −3.64305 −0.141698 −0.0708490 0.997487i \(-0.522571\pi\)
−0.0708490 + 0.997487i \(0.522571\pi\)
\(662\) 0 0
\(663\) 31.8711 1.23777
\(664\) 0 0
\(665\) −16.2414 −0.629813
\(666\) 0 0
\(667\) −7.72018 −0.298927
\(668\) 0 0
\(669\) 51.3584 1.98563
\(670\) 0 0
\(671\) −74.3143 −2.86887
\(672\) 0 0
\(673\) 34.5805 1.33298 0.666489 0.745514i \(-0.267796\pi\)
0.666489 + 0.745514i \(0.267796\pi\)
\(674\) 0 0
\(675\) −3.41732 −0.131533
\(676\) 0 0
\(677\) −30.8756 −1.18664 −0.593322 0.804965i \(-0.702184\pi\)
−0.593322 + 0.804965i \(0.702184\pi\)
\(678\) 0 0
\(679\) −42.1597 −1.61794
\(680\) 0 0
\(681\) 34.5099 1.32242
\(682\) 0 0
\(683\) −40.4442 −1.54755 −0.773777 0.633458i \(-0.781635\pi\)
−0.773777 + 0.633458i \(0.781635\pi\)
\(684\) 0 0
\(685\) −13.4535 −0.514034
\(686\) 0 0
\(687\) 12.7027 0.484638
\(688\) 0 0
\(689\) −16.8873 −0.643355
\(690\) 0 0
\(691\) 28.7243 1.09272 0.546361 0.837550i \(-0.316013\pi\)
0.546361 + 0.837550i \(0.316013\pi\)
\(692\) 0 0
\(693\) −24.9199 −0.946630
\(694\) 0 0
\(695\) 21.1784 0.803343
\(696\) 0 0
\(697\) −23.2792 −0.881763
\(698\) 0 0
\(699\) −3.73737 −0.141360
\(700\) 0 0
\(701\) −28.1207 −1.06210 −0.531052 0.847339i \(-0.678203\pi\)
−0.531052 + 0.847339i \(0.678203\pi\)
\(702\) 0 0
\(703\) 33.0822 1.24772
\(704\) 0 0
\(705\) −4.58063 −0.172517
\(706\) 0 0
\(707\) −7.42108 −0.279098
\(708\) 0 0
\(709\) 22.4908 0.844661 0.422331 0.906442i \(-0.361212\pi\)
0.422331 + 0.906442i \(0.361212\pi\)
\(710\) 0 0
\(711\) 15.7283 0.589857
\(712\) 0 0
\(713\) −36.5550 −1.36899
\(714\) 0 0
\(715\) 16.3140 0.610109
\(716\) 0 0
\(717\) −18.3780 −0.686340
\(718\) 0 0
\(719\) 30.6526 1.14315 0.571574 0.820551i \(-0.306333\pi\)
0.571574 + 0.820551i \(0.306333\pi\)
\(720\) 0 0
\(721\) −27.8455 −1.03702
\(722\) 0 0
\(723\) 6.55631 0.243832
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) 30.9437 1.14764 0.573819 0.818982i \(-0.305461\pi\)
0.573819 + 0.818982i \(0.305461\pi\)
\(728\) 0 0
\(729\) 6.09503 0.225742
\(730\) 0 0
\(731\) −22.6003 −0.835901
\(732\) 0 0
\(733\) −25.0013 −0.923443 −0.461722 0.887025i \(-0.652768\pi\)
−0.461722 + 0.887025i \(0.652768\pi\)
\(734\) 0 0
\(735\) 7.47464 0.275706
\(736\) 0 0
\(737\) −68.4101 −2.51992
\(738\) 0 0
\(739\) −19.6569 −0.723090 −0.361545 0.932355i \(-0.617751\pi\)
−0.361545 + 0.932355i \(0.617751\pi\)
\(740\) 0 0
\(741\) 30.3014 1.11315
\(742\) 0 0
\(743\) −9.06572 −0.332589 −0.166295 0.986076i \(-0.553180\pi\)
−0.166295 + 0.986076i \(0.553180\pi\)
\(744\) 0 0
\(745\) 2.20722 0.0808662
\(746\) 0 0
\(747\) −2.80762 −0.102726
\(748\) 0 0
\(749\) −52.2806 −1.91029
\(750\) 0 0
\(751\) −38.6602 −1.41073 −0.705366 0.708843i \(-0.749217\pi\)
−0.705366 + 0.708843i \(0.749217\pi\)
\(752\) 0 0
\(753\) −19.3809 −0.706278
\(754\) 0 0
\(755\) 23.4839 0.854667
\(756\) 0 0
\(757\) −22.1706 −0.805806 −0.402903 0.915243i \(-0.631999\pi\)
−0.402903 + 0.915243i \(0.631999\pi\)
\(758\) 0 0
\(759\) 90.5837 3.28798
\(760\) 0 0
\(761\) −1.14874 −0.0416417 −0.0208209 0.999783i \(-0.506628\pi\)
−0.0208209 + 0.999783i \(0.506628\pi\)
\(762\) 0 0
\(763\) 18.0678 0.654097
\(764\) 0 0
\(765\) 7.16523 0.259060
\(766\) 0 0
\(767\) 25.8646 0.933915
\(768\) 0 0
\(769\) −32.1111 −1.15796 −0.578979 0.815343i \(-0.696549\pi\)
−0.578979 + 0.815343i \(0.696549\pi\)
\(770\) 0 0
\(771\) 14.2077 0.511680
\(772\) 0 0
\(773\) −8.68727 −0.312460 −0.156230 0.987721i \(-0.549934\pi\)
−0.156230 + 0.987721i \(0.549934\pi\)
\(774\) 0 0
\(775\) −4.73499 −0.170086
\(776\) 0 0
\(777\) −45.0118 −1.61479
\(778\) 0 0
\(779\) −22.1326 −0.792984
\(780\) 0 0
\(781\) −7.40491 −0.264969
\(782\) 0 0
\(783\) 3.41732 0.122125
\(784\) 0 0
\(785\) 21.0278 0.750516
\(786\) 0 0
\(787\) −54.9945 −1.96034 −0.980171 0.198155i \(-0.936505\pi\)
−0.980171 + 0.198155i \(0.936505\pi\)
\(788\) 0 0
\(789\) 14.8424 0.528403
\(790\) 0 0
\(791\) 16.3421 0.581058
\(792\) 0 0
\(793\) −38.4318 −1.36475
\(794\) 0 0
\(795\) −12.1457 −0.430763
\(796\) 0 0
\(797\) 9.95960 0.352787 0.176394 0.984320i \(-0.443557\pi\)
0.176394 + 0.984320i \(0.443557\pi\)
\(798\) 0 0
\(799\) −11.5168 −0.407434
\(800\) 0 0
\(801\) 2.97137 0.104988
\(802\) 0 0
\(803\) 29.0924 1.02665
\(804\) 0 0
\(805\) −25.1090 −0.884975
\(806\) 0 0
\(807\) 42.8192 1.50731
\(808\) 0 0
\(809\) −5.59503 −0.196711 −0.0983553 0.995151i \(-0.531358\pi\)
−0.0983553 + 0.995151i \(0.531358\pi\)
\(810\) 0 0
\(811\) 19.0351 0.668414 0.334207 0.942500i \(-0.391531\pi\)
0.334207 + 0.942500i \(0.391531\pi\)
\(812\) 0 0
\(813\) 30.6352 1.07443
\(814\) 0 0
\(815\) −14.5489 −0.509627
\(816\) 0 0
\(817\) −21.4871 −0.751740
\(818\) 0 0
\(819\) −12.8874 −0.450322
\(820\) 0 0
\(821\) −41.4720 −1.44738 −0.723692 0.690123i \(-0.757556\pi\)
−0.723692 + 0.690123i \(0.757556\pi\)
\(822\) 0 0
\(823\) −46.8732 −1.63390 −0.816949 0.576710i \(-0.804336\pi\)
−0.816949 + 0.576710i \(0.804336\pi\)
\(824\) 0 0
\(825\) 11.7334 0.408504
\(826\) 0 0
\(827\) 39.8556 1.38592 0.692958 0.720978i \(-0.256307\pi\)
0.692958 + 0.720978i \(0.256307\pi\)
\(828\) 0 0
\(829\) −12.8097 −0.444900 −0.222450 0.974944i \(-0.571405\pi\)
−0.222450 + 0.974944i \(0.571405\pi\)
\(830\) 0 0
\(831\) 33.9911 1.17914
\(832\) 0 0
\(833\) 18.7929 0.651137
\(834\) 0 0
\(835\) −4.57079 −0.158179
\(836\) 0 0
\(837\) 16.1810 0.559296
\(838\) 0 0
\(839\) 11.3442 0.391644 0.195822 0.980639i \(-0.437262\pi\)
0.195822 + 0.980639i \(0.437262\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 18.5886 0.640225
\(844\) 0 0
\(845\) −4.56318 −0.156978
\(846\) 0 0
\(847\) −66.8229 −2.29606
\(848\) 0 0
\(849\) 7.55524 0.259295
\(850\) 0 0
\(851\) 51.1446 1.75322
\(852\) 0 0
\(853\) 30.1206 1.03131 0.515655 0.856796i \(-0.327548\pi\)
0.515655 + 0.856796i \(0.327548\pi\)
\(854\) 0 0
\(855\) 6.81232 0.232977
\(856\) 0 0
\(857\) −29.0771 −0.993256 −0.496628 0.867964i \(-0.665429\pi\)
−0.496628 + 0.867964i \(0.665429\pi\)
\(858\) 0 0
\(859\) 41.3102 1.40949 0.704743 0.709462i \(-0.251062\pi\)
0.704743 + 0.709462i \(0.251062\pi\)
\(860\) 0 0
\(861\) 30.1138 1.02628
\(862\) 0 0
\(863\) 9.60206 0.326858 0.163429 0.986555i \(-0.447745\pi\)
0.163429 + 0.986555i \(0.447745\pi\)
\(864\) 0 0
\(865\) −17.1599 −0.583455
\(866\) 0 0
\(867\) 22.1180 0.751166
\(868\) 0 0
\(869\) 64.7558 2.19669
\(870\) 0 0
\(871\) −35.3784 −1.19875
\(872\) 0 0
\(873\) 17.6836 0.598498
\(874\) 0 0
\(875\) −3.25238 −0.109951
\(876\) 0 0
\(877\) −29.7562 −1.00480 −0.502398 0.864636i \(-0.667549\pi\)
−0.502398 + 0.864636i \(0.667549\pi\)
\(878\) 0 0
\(879\) 20.9829 0.707736
\(880\) 0 0
\(881\) 2.34996 0.0791720 0.0395860 0.999216i \(-0.487396\pi\)
0.0395860 + 0.999216i \(0.487396\pi\)
\(882\) 0 0
\(883\) −42.9628 −1.44581 −0.722907 0.690946i \(-0.757194\pi\)
−0.722907 + 0.690946i \(0.757194\pi\)
\(884\) 0 0
\(885\) 18.6023 0.625310
\(886\) 0 0
\(887\) 12.3872 0.415921 0.207961 0.978137i \(-0.433317\pi\)
0.207961 + 0.978137i \(0.433317\pi\)
\(888\) 0 0
\(889\) 72.4958 2.43143
\(890\) 0 0
\(891\) −63.0828 −2.11335
\(892\) 0 0
\(893\) −10.9495 −0.366412
\(894\) 0 0
\(895\) −13.5445 −0.452743
\(896\) 0 0
\(897\) 46.8456 1.56413
\(898\) 0 0
\(899\) 4.73499 0.157921
\(900\) 0 0
\(901\) −30.5370 −1.01734
\(902\) 0 0
\(903\) 29.2355 0.972897
\(904\) 0 0
\(905\) 1.55524 0.0516980
\(906\) 0 0
\(907\) 46.4672 1.54292 0.771459 0.636279i \(-0.219527\pi\)
0.771459 + 0.636279i \(0.219527\pi\)
\(908\) 0 0
\(909\) 3.11272 0.103242
\(910\) 0 0
\(911\) −9.63348 −0.319171 −0.159586 0.987184i \(-0.551016\pi\)
−0.159586 + 0.987184i \(0.551016\pi\)
\(912\) 0 0
\(913\) −11.5594 −0.382561
\(914\) 0 0
\(915\) −27.6409 −0.913781
\(916\) 0 0
\(917\) −7.40873 −0.244658
\(918\) 0 0
\(919\) 30.5201 1.00677 0.503383 0.864063i \(-0.332089\pi\)
0.503383 + 0.864063i \(0.332089\pi\)
\(920\) 0 0
\(921\) −16.2836 −0.536563
\(922\) 0 0
\(923\) −3.82947 −0.126048
\(924\) 0 0
\(925\) 6.62480 0.217822
\(926\) 0 0
\(927\) 11.6796 0.383607
\(928\) 0 0
\(929\) 21.9036 0.718633 0.359316 0.933216i \(-0.383010\pi\)
0.359316 + 0.933216i \(0.383010\pi\)
\(930\) 0 0
\(931\) 17.8673 0.585578
\(932\) 0 0
\(933\) −46.4002 −1.51908
\(934\) 0 0
\(935\) 29.5004 0.964765
\(936\) 0 0
\(937\) −35.7562 −1.16810 −0.584052 0.811716i \(-0.698534\pi\)
−0.584052 + 0.811716i \(0.698534\pi\)
\(938\) 0 0
\(939\) −0.362656 −0.0118348
\(940\) 0 0
\(941\) −23.2756 −0.758764 −0.379382 0.925240i \(-0.623863\pi\)
−0.379382 + 0.925240i \(0.623863\pi\)
\(942\) 0 0
\(943\) −34.2168 −1.11425
\(944\) 0 0
\(945\) 11.1144 0.361552
\(946\) 0 0
\(947\) −21.0531 −0.684134 −0.342067 0.939676i \(-0.611127\pi\)
−0.342067 + 0.939676i \(0.611127\pi\)
\(948\) 0 0
\(949\) 15.0452 0.488388
\(950\) 0 0
\(951\) −20.4976 −0.664680
\(952\) 0 0
\(953\) 26.0026 0.842307 0.421153 0.906989i \(-0.361625\pi\)
0.421153 + 0.906989i \(0.361625\pi\)
\(954\) 0 0
\(955\) 6.05339 0.195883
\(956\) 0 0
\(957\) −11.7334 −0.379286
\(958\) 0 0
\(959\) 43.7561 1.41296
\(960\) 0 0
\(961\) −8.57988 −0.276770
\(962\) 0 0
\(963\) 21.9287 0.706643
\(964\) 0 0
\(965\) −18.1397 −0.583937
\(966\) 0 0
\(967\) 5.91411 0.190185 0.0950925 0.995468i \(-0.469685\pi\)
0.0950925 + 0.995468i \(0.469685\pi\)
\(968\) 0 0
\(969\) 54.7935 1.76022
\(970\) 0 0
\(971\) −18.3368 −0.588457 −0.294229 0.955735i \(-0.595063\pi\)
−0.294229 + 0.955735i \(0.595063\pi\)
\(972\) 0 0
\(973\) −68.8803 −2.20820
\(974\) 0 0
\(975\) 6.06794 0.194330
\(976\) 0 0
\(977\) 10.0172 0.320477 0.160239 0.987078i \(-0.448774\pi\)
0.160239 + 0.987078i \(0.448774\pi\)
\(978\) 0 0
\(979\) 12.2336 0.390988
\(980\) 0 0
\(981\) −7.57839 −0.241959
\(982\) 0 0
\(983\) −14.7655 −0.470948 −0.235474 0.971881i \(-0.575664\pi\)
−0.235474 + 0.971881i \(0.575664\pi\)
\(984\) 0 0
\(985\) −4.35026 −0.138611
\(986\) 0 0
\(987\) 14.8980 0.474208
\(988\) 0 0
\(989\) −33.2189 −1.05630
\(990\) 0 0
\(991\) −15.9863 −0.507821 −0.253910 0.967228i \(-0.581717\pi\)
−0.253910 + 0.967228i \(0.581717\pi\)
\(992\) 0 0
\(993\) −17.5781 −0.557824
\(994\) 0 0
\(995\) −3.40997 −0.108103
\(996\) 0 0
\(997\) 3.85897 0.122215 0.0611074 0.998131i \(-0.480537\pi\)
0.0611074 + 0.998131i \(0.480537\pi\)
\(998\) 0 0
\(999\) −22.6390 −0.716267
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9280.2.a.ck.1.4 5
4.3 odd 2 9280.2.a.ci.1.2 5
8.3 odd 2 2320.2.a.v.1.4 5
8.5 even 2 1160.2.a.h.1.2 5
40.29 even 2 5800.2.a.u.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.2.a.h.1.2 5 8.5 even 2
2320.2.a.v.1.4 5 8.3 odd 2
5800.2.a.u.1.4 5 40.29 even 2
9280.2.a.ci.1.2 5 4.3 odd 2
9280.2.a.ck.1.4 5 1.1 even 1 trivial