Properties

Label 2-9280-1.1-c1-0-108
Degree $2$
Conductor $9280$
Sign $1$
Analytic cond. $74.1011$
Root an. cond. $8.60820$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.53·3-s + 5-s + 1.53·7-s − 0.633·9-s + 4.57·11-s − 3.63·13-s + 1.53·15-s + 1.77·17-s + 5.17·19-s + 2.36·21-s + 4.20·23-s + 25-s − 5.58·27-s − 29-s + 1.17·31-s + 7.03·33-s + 1.53·35-s − 3.36·37-s − 5.58·39-s − 1.95·41-s + 2.46·43-s − 0.633·45-s + 7.12·47-s − 4.63·49-s + 2.73·51-s − 8.11·53-s + 4.57·55-s + ⋯
L(s)  = 1  + 0.888·3-s + 0.447·5-s + 0.581·7-s − 0.211·9-s + 1.37·11-s − 1.00·13-s + 0.397·15-s + 0.430·17-s + 1.18·19-s + 0.516·21-s + 0.876·23-s + 0.200·25-s − 1.07·27-s − 0.185·29-s + 0.210·31-s + 1.22·33-s + 0.260·35-s − 0.553·37-s − 0.895·39-s − 0.305·41-s + 0.375·43-s − 0.0943·45-s + 1.03·47-s − 0.661·49-s + 0.382·51-s − 1.11·53-s + 0.616·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9280\)    =    \(2^{6} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(74.1011\)
Root analytic conductor: \(8.60820\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.807830298\)
\(L(\frac12)\) \(\approx\) \(3.807830298\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 + T \)
good3 \( 1 - 1.53T + 3T^{2} \)
7 \( 1 - 1.53T + 7T^{2} \)
11 \( 1 - 4.57T + 11T^{2} \)
13 \( 1 + 3.63T + 13T^{2} \)
17 \( 1 - 1.77T + 17T^{2} \)
19 \( 1 - 5.17T + 19T^{2} \)
23 \( 1 - 4.20T + 23T^{2} \)
31 \( 1 - 1.17T + 31T^{2} \)
37 \( 1 + 3.36T + 37T^{2} \)
41 \( 1 + 1.95T + 41T^{2} \)
43 \( 1 - 2.46T + 43T^{2} \)
47 \( 1 - 7.12T + 47T^{2} \)
53 \( 1 + 8.11T + 53T^{2} \)
59 \( 1 - 5.74T + 59T^{2} \)
61 \( 1 - 8.77T + 61T^{2} \)
67 \( 1 - 15.1T + 67T^{2} \)
71 \( 1 + 1.07T + 71T^{2} \)
73 \( 1 - 10.4T + 73T^{2} \)
79 \( 1 - 5.97T + 79T^{2} \)
83 \( 1 + 3.60T + 83T^{2} \)
89 \( 1 - 9.74T + 89T^{2} \)
97 \( 1 + 10.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81043774106641902958999159996, −7.07855440676444547941141498801, −6.52111974763174388173411458647, −5.44286119266726511944148010147, −5.10485675168862687461627363674, −4.05649697773142171756300405093, −3.37521393701011575178590349768, −2.62413560403365195308467863999, −1.82749839305297048500834232014, −0.940564823738262941429470648808, 0.940564823738262941429470648808, 1.82749839305297048500834232014, 2.62413560403365195308467863999, 3.37521393701011575178590349768, 4.05649697773142171756300405093, 5.10485675168862687461627363674, 5.44286119266726511944148010147, 6.52111974763174388173411458647, 7.07855440676444547941141498801, 7.81043774106641902958999159996

Graph of the $Z$-function along the critical line