Properties

Label 9280.2.a.cf
Level $9280$
Weight $2$
Character orbit 9280.a
Self dual yes
Analytic conductor $74.101$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9280,2,Mod(1,9280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9280.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9280 = 2^{6} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9280.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,4,0,2,0,8,0,-2,0,-4,0,2,0,-4,0,6,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.1011730757\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.11344.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 4640)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{3} + q^{5} - \beta_{3} q^{7} + ( - \beta_{2} - \beta_1 + 2) q^{9} + ( - \beta_{3} + \beta_{2} - \beta_1 - 1) q^{11} + ( - \beta_{2} - \beta_1 - 1) q^{13} - \beta_{3} q^{15} + ( - 2 \beta_{3} - \beta_1 - 2) q^{17}+ \cdots + ( - \beta_{3} - \beta_{2} + 3 \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 4 q^{5} + 2 q^{7} + 8 q^{9} - 2 q^{11} - 4 q^{13} + 2 q^{15} - 4 q^{17} + 6 q^{19} + 20 q^{21} - 14 q^{23} + 4 q^{25} - 4 q^{27} - 4 q^{29} - 10 q^{31} + 12 q^{33} + 2 q^{35} + 16 q^{37}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 4x^{2} + 4x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 3\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{3} - 3\beta_{2} + 7\beta _1 + 11 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.552409
2.78165
−1.51658
1.28734
0 −2.87834 0 1.00000 0 −2.87834 0 5.28487 0
1.2 0 0.296842 0 1.00000 0 0.296842 0 −2.91188 0
1.3 0 1.53844 0 1.00000 0 1.53844 0 −0.633188 0
1.4 0 3.04306 0 1.00000 0 3.04306 0 6.26020 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9280.2.a.cf 4
4.b odd 2 1 9280.2.a.bz 4
8.b even 2 1 4640.2.a.l 4
8.d odd 2 1 4640.2.a.r yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4640.2.a.l 4 8.b even 2 1
4640.2.a.r yes 4 8.d odd 2 1
9280.2.a.bz 4 4.b odd 2 1
9280.2.a.cf 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9280))\):

\( T_{3}^{4} - 2T_{3}^{3} - 8T_{3}^{2} + 16T_{3} - 4 \) Copy content Toggle raw display
\( T_{7}^{4} - 2T_{7}^{3} - 8T_{7}^{2} + 16T_{7} - 4 \) Copy content Toggle raw display
\( T_{11}^{4} + 2T_{11}^{3} - 24T_{11}^{2} - 32T_{11} + 20 \) Copy content Toggle raw display
\( T_{13}^{4} + 4T_{13}^{3} - 24T_{13}^{2} - 48T_{13} + 160 \) Copy content Toggle raw display
\( T_{19}^{4} - 6T_{19}^{3} - 28T_{19}^{2} + 160T_{19} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 2 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 2 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$11$ \( T^{4} + 2 T^{3} + \cdots + 20 \) Copy content Toggle raw display
$13$ \( T^{4} + 4 T^{3} + \cdots + 160 \) Copy content Toggle raw display
$17$ \( T^{4} + 4 T^{3} + \cdots + 300 \) Copy content Toggle raw display
$19$ \( T^{4} - 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$23$ \( T^{4} + 14 T^{3} + \cdots - 772 \) Copy content Toggle raw display
$29$ \( (T + 1)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 10 T^{3} + \cdots + 100 \) Copy content Toggle raw display
$37$ \( T^{4} - 16 T^{3} + \cdots - 596 \) Copy content Toggle raw display
$41$ \( T^{4} - 72 T^{2} + \cdots + 480 \) Copy content Toggle raw display
$43$ \( T^{4} - 14 T^{3} + \cdots + 60 \) Copy content Toggle raw display
$47$ \( T^{4} - 6 T^{3} + \cdots - 372 \) Copy content Toggle raw display
$53$ \( T^{4} + 8 T^{3} + \cdots + 352 \) Copy content Toggle raw display
$59$ \( T^{4} + 12 T^{3} + \cdots - 720 \) Copy content Toggle raw display
$61$ \( T^{4} + 16 T^{3} + \cdots - 4704 \) Copy content Toggle raw display
$67$ \( T^{4} - 6 T^{3} + \cdots + 8524 \) Copy content Toggle raw display
$71$ \( T^{4} - 4 T^{3} + \cdots + 48 \) Copy content Toggle raw display
$73$ \( T^{4} - 12 T^{3} + \cdots - 2820 \) Copy content Toggle raw display
$79$ \( T^{4} + 2 T^{3} + \cdots - 1004 \) Copy content Toggle raw display
$83$ \( T^{4} - 22 T^{3} + \cdots - 1524 \) Copy content Toggle raw display
$89$ \( T^{4} - 4 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$97$ \( T^{4} + 8 T^{3} + \cdots - 9092 \) Copy content Toggle raw display
show more
show less