Properties

Label 2-925-1.1-c1-0-33
Degree $2$
Conductor $925$
Sign $-1$
Analytic cond. $7.38616$
Root an. cond. $2.71774$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.83·2-s + 0.352·3-s + 1.37·4-s − 0.647·6-s + 3.54·7-s + 1.14·8-s − 2.87·9-s − 1.74·11-s + 0.484·12-s − 1.99·13-s − 6.51·14-s − 4.85·16-s − 6.52·17-s + 5.28·18-s − 4.61·19-s + 1.25·21-s + 3.19·22-s + 9.26·23-s + 0.404·24-s + 3.66·26-s − 2.07·27-s + 4.87·28-s − 9.40·29-s + 7.06·31-s + 6.63·32-s − 0.613·33-s + 11.9·34-s + ⋯
L(s)  = 1  − 1.29·2-s + 0.203·3-s + 0.687·4-s − 0.264·6-s + 1.34·7-s + 0.406·8-s − 0.958·9-s − 0.525·11-s + 0.139·12-s − 0.552·13-s − 1.74·14-s − 1.21·16-s − 1.58·17-s + 1.24·18-s − 1.05·19-s + 0.272·21-s + 0.682·22-s + 1.93·23-s + 0.0826·24-s + 0.717·26-s − 0.398·27-s + 0.921·28-s − 1.74·29-s + 1.26·31-s + 1.17·32-s − 0.106·33-s + 2.05·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(925\)    =    \(5^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(7.38616\)
Root analytic conductor: \(2.71774\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
37 \( 1 + T \)
good2 \( 1 + 1.83T + 2T^{2} \)
3 \( 1 - 0.352T + 3T^{2} \)
7 \( 1 - 3.54T + 7T^{2} \)
11 \( 1 + 1.74T + 11T^{2} \)
13 \( 1 + 1.99T + 13T^{2} \)
17 \( 1 + 6.52T + 17T^{2} \)
19 \( 1 + 4.61T + 19T^{2} \)
23 \( 1 - 9.26T + 23T^{2} \)
29 \( 1 + 9.40T + 29T^{2} \)
31 \( 1 - 7.06T + 31T^{2} \)
41 \( 1 + 2.07T + 41T^{2} \)
43 \( 1 - 5.12T + 43T^{2} \)
47 \( 1 + 8.12T + 47T^{2} \)
53 \( 1 + 14.3T + 53T^{2} \)
59 \( 1 + 1.14T + 59T^{2} \)
61 \( 1 + 2.40T + 61T^{2} \)
67 \( 1 - 6.16T + 67T^{2} \)
71 \( 1 + 5.13T + 71T^{2} \)
73 \( 1 + 12.9T + 73T^{2} \)
79 \( 1 + 7.83T + 79T^{2} \)
83 \( 1 - 5.45T + 83T^{2} \)
89 \( 1 - 4.14T + 89T^{2} \)
97 \( 1 - 11.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.345138322691051029266095528530, −8.806038797921591573379824531838, −8.179498431412592056800751489835, −7.51182727520342744551379314911, −6.52801152651150597522371190630, −5.11826010551149792835613094366, −4.48116997824360617345329077200, −2.67337699010519136620551459981, −1.72231313287446702179329592662, 0, 1.72231313287446702179329592662, 2.67337699010519136620551459981, 4.48116997824360617345329077200, 5.11826010551149792835613094366, 6.52801152651150597522371190630, 7.51182727520342744551379314911, 8.179498431412592056800751489835, 8.806038797921591573379824531838, 9.345138322691051029266095528530

Graph of the $Z$-function along the critical line