Properties

Label 2-9196-1.1-c1-0-140
Degree $2$
Conductor $9196$
Sign $-1$
Analytic cond. $73.4304$
Root an. cond. $8.56915$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.26·3-s + 3.95·5-s − 4.74·7-s − 1.39·9-s − 3.37·13-s + 5.00·15-s + 1.77·17-s − 19-s − 6.00·21-s + 6.66·23-s + 10.6·25-s − 5.56·27-s + 2.49·29-s + 3.70·31-s − 18.7·35-s − 4.97·37-s − 4.27·39-s − 8.19·41-s − 6.63·43-s − 5.50·45-s − 5.30·47-s + 15.4·49-s + 2.24·51-s − 2.97·53-s − 1.26·57-s − 11.0·59-s + 7.58·61-s + ⋯
L(s)  = 1  + 0.731·3-s + 1.76·5-s − 1.79·7-s − 0.464·9-s − 0.935·13-s + 1.29·15-s + 0.430·17-s − 0.229·19-s − 1.31·21-s + 1.39·23-s + 2.12·25-s − 1.07·27-s + 0.463·29-s + 0.665·31-s − 3.16·35-s − 0.818·37-s − 0.684·39-s − 1.27·41-s − 1.01·43-s − 0.820·45-s − 0.773·47-s + 2.21·49-s + 0.314·51-s − 0.408·53-s − 0.167·57-s − 1.43·59-s + 0.971·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9196\)    =    \(2^{2} \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(73.4304\)
Root analytic conductor: \(8.56915\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9196,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 1.26T + 3T^{2} \)
5 \( 1 - 3.95T + 5T^{2} \)
7 \( 1 + 4.74T + 7T^{2} \)
13 \( 1 + 3.37T + 13T^{2} \)
17 \( 1 - 1.77T + 17T^{2} \)
23 \( 1 - 6.66T + 23T^{2} \)
29 \( 1 - 2.49T + 29T^{2} \)
31 \( 1 - 3.70T + 31T^{2} \)
37 \( 1 + 4.97T + 37T^{2} \)
41 \( 1 + 8.19T + 41T^{2} \)
43 \( 1 + 6.63T + 43T^{2} \)
47 \( 1 + 5.30T + 47T^{2} \)
53 \( 1 + 2.97T + 53T^{2} \)
59 \( 1 + 11.0T + 59T^{2} \)
61 \( 1 - 7.58T + 61T^{2} \)
67 \( 1 + 12.7T + 67T^{2} \)
71 \( 1 + 7.43T + 71T^{2} \)
73 \( 1 - 8.29T + 73T^{2} \)
79 \( 1 - 3.05T + 79T^{2} \)
83 \( 1 + 5.54T + 83T^{2} \)
89 \( 1 + 4.63T + 89T^{2} \)
97 \( 1 + 8.56T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.10711496285885395741969957688, −6.69454097533204159076571549113, −6.08014638795881072872200755938, −5.42626291409987921733228821676, −4.76377188598109535555433465975, −3.36907855509977890926032270579, −2.98532835048811683320691246860, −2.42958293236413863774730566810, −1.45236721096771900704507526463, 0, 1.45236721096771900704507526463, 2.42958293236413863774730566810, 2.98532835048811683320691246860, 3.36907855509977890926032270579, 4.76377188598109535555433465975, 5.42626291409987921733228821676, 6.08014638795881072872200755938, 6.69454097533204159076571549113, 7.10711496285885395741969957688

Graph of the $Z$-function along the critical line