Properties

Label 2-9196-1.1-c1-0-128
Degree $2$
Conductor $9196$
Sign $-1$
Analytic cond. $73.4304$
Root an. cond. $8.56915$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.50·3-s − 3.76·5-s + 4.72·7-s − 0.734·9-s − 0.374·13-s − 5.66·15-s − 2.41·17-s + 19-s + 7.10·21-s − 4.04·23-s + 9.17·25-s − 5.62·27-s + 8.79·29-s − 5.56·31-s − 17.7·35-s − 4.35·37-s − 0.563·39-s + 1.30·41-s + 7.35·43-s + 2.76·45-s − 1.25·47-s + 15.3·49-s − 3.63·51-s − 12.6·53-s + 1.50·57-s − 0.988·59-s + 14.7·61-s + ⋯
L(s)  = 1  + 0.869·3-s − 1.68·5-s + 1.78·7-s − 0.244·9-s − 0.103·13-s − 1.46·15-s − 0.586·17-s + 0.229·19-s + 1.55·21-s − 0.842·23-s + 1.83·25-s − 1.08·27-s + 1.63·29-s − 0.999·31-s − 3.00·35-s − 0.715·37-s − 0.0902·39-s + 0.204·41-s + 1.12·43-s + 0.412·45-s − 0.182·47-s + 2.18·49-s − 0.509·51-s − 1.74·53-s + 0.199·57-s − 0.128·59-s + 1.89·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9196\)    =    \(2^{2} \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(73.4304\)
Root analytic conductor: \(8.56915\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9196,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 1.50T + 3T^{2} \)
5 \( 1 + 3.76T + 5T^{2} \)
7 \( 1 - 4.72T + 7T^{2} \)
13 \( 1 + 0.374T + 13T^{2} \)
17 \( 1 + 2.41T + 17T^{2} \)
23 \( 1 + 4.04T + 23T^{2} \)
29 \( 1 - 8.79T + 29T^{2} \)
31 \( 1 + 5.56T + 31T^{2} \)
37 \( 1 + 4.35T + 37T^{2} \)
41 \( 1 - 1.30T + 41T^{2} \)
43 \( 1 - 7.35T + 43T^{2} \)
47 \( 1 + 1.25T + 47T^{2} \)
53 \( 1 + 12.6T + 53T^{2} \)
59 \( 1 + 0.988T + 59T^{2} \)
61 \( 1 - 14.7T + 61T^{2} \)
67 \( 1 + 12.1T + 67T^{2} \)
71 \( 1 + 1.84T + 71T^{2} \)
73 \( 1 + 8.51T + 73T^{2} \)
79 \( 1 + 2.81T + 79T^{2} \)
83 \( 1 + 16.5T + 83T^{2} \)
89 \( 1 + 7.66T + 89T^{2} \)
97 \( 1 - 11.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.58015992391874585574824376878, −7.13355957057024570855997784785, −5.97164029539227885985538482653, −5.03181490690687398563743679043, −4.43823311623701049176320751524, −3.92707754069971558490027982978, −3.08689346663036440567430833604, −2.27834113107156348127454489649, −1.31394046144142965622608683627, 0, 1.31394046144142965622608683627, 2.27834113107156348127454489649, 3.08689346663036440567430833604, 3.92707754069971558490027982978, 4.43823311623701049176320751524, 5.03181490690687398563743679043, 5.97164029539227885985538482653, 7.13355957057024570855997784785, 7.58015992391874585574824376878

Graph of the $Z$-function along the critical line