Properties

Label 2-9196-1.1-c1-0-100
Degree $2$
Conductor $9196$
Sign $-1$
Analytic cond. $73.4304$
Root an. cond. $8.56915$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.66·3-s − 1.44·5-s + 4.59·7-s − 0.239·9-s − 2.58·13-s + 2.40·15-s + 1.76·17-s − 19-s − 7.63·21-s + 3.19·23-s − 2.90·25-s + 5.38·27-s + 9.13·29-s − 8.95·31-s − 6.65·35-s − 11.2·37-s + 4.30·39-s − 3.21·41-s + 9.73·43-s + 0.346·45-s + 4.06·47-s + 14.1·49-s − 2.93·51-s − 7.05·53-s + 1.66·57-s − 3.60·59-s − 3.92·61-s + ⋯
L(s)  = 1  − 0.959·3-s − 0.647·5-s + 1.73·7-s − 0.0797·9-s − 0.718·13-s + 0.621·15-s + 0.428·17-s − 0.229·19-s − 1.66·21-s + 0.666·23-s − 0.580·25-s + 1.03·27-s + 1.69·29-s − 1.60·31-s − 1.12·35-s − 1.85·37-s + 0.688·39-s − 0.501·41-s + 1.48·43-s + 0.0516·45-s + 0.593·47-s + 2.01·49-s − 0.411·51-s − 0.968·53-s + 0.220·57-s − 0.469·59-s − 0.502·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9196\)    =    \(2^{2} \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(73.4304\)
Root analytic conductor: \(8.56915\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9196,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
19 \( 1 + T \)
good3 \( 1 + 1.66T + 3T^{2} \)
5 \( 1 + 1.44T + 5T^{2} \)
7 \( 1 - 4.59T + 7T^{2} \)
13 \( 1 + 2.58T + 13T^{2} \)
17 \( 1 - 1.76T + 17T^{2} \)
23 \( 1 - 3.19T + 23T^{2} \)
29 \( 1 - 9.13T + 29T^{2} \)
31 \( 1 + 8.95T + 31T^{2} \)
37 \( 1 + 11.2T + 37T^{2} \)
41 \( 1 + 3.21T + 41T^{2} \)
43 \( 1 - 9.73T + 43T^{2} \)
47 \( 1 - 4.06T + 47T^{2} \)
53 \( 1 + 7.05T + 53T^{2} \)
59 \( 1 + 3.60T + 59T^{2} \)
61 \( 1 + 3.92T + 61T^{2} \)
67 \( 1 - 4.93T + 67T^{2} \)
71 \( 1 + 10.4T + 71T^{2} \)
73 \( 1 + 3.59T + 73T^{2} \)
79 \( 1 - 6.70T + 79T^{2} \)
83 \( 1 - 11.7T + 83T^{2} \)
89 \( 1 + 15.0T + 89T^{2} \)
97 \( 1 + 1.56T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.42903755297767855606821245246, −6.78040984390765606035095802619, −5.81151389731054732822735497465, −5.21626104718072576264019469167, −4.78206180981360300852576782399, −4.09540472410643348059595334735, −3.06396046310134759518014181074, −2.02075905000205630434553115490, −1.11166742571010440030493122417, 0, 1.11166742571010440030493122417, 2.02075905000205630434553115490, 3.06396046310134759518014181074, 4.09540472410643348059595334735, 4.78206180981360300852576782399, 5.21626104718072576264019469167, 5.81151389731054732822735497465, 6.78040984390765606035095802619, 7.42903755297767855606821245246

Graph of the $Z$-function along the critical line