L(s) = 1 | + (−0.5 + 0.866i)2-s − 3·3-s + (0.500 + 0.866i)4-s + (−1.5 − 2.59i)5-s + (1.5 − 2.59i)6-s + (−2.5 − 0.866i)7-s − 3·8-s + 6·9-s + 3·10-s − 3·11-s + (−1.50 − 2.59i)12-s + (−1 + 3.46i)13-s + (2 − 1.73i)14-s + (4.5 + 7.79i)15-s + (0.500 − 0.866i)16-s + (1 + 1.73i)17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s − 1.73·3-s + (0.250 + 0.433i)4-s + (−0.670 − 1.16i)5-s + (0.612 − 1.06i)6-s + (−0.944 − 0.327i)7-s − 1.06·8-s + 2·9-s + 0.948·10-s − 0.904·11-s + (−0.433 − 0.749i)12-s + (−0.277 + 0.960i)13-s + (0.534 − 0.462i)14-s + (1.16 + 2.01i)15-s + (0.125 − 0.216i)16-s + (0.242 + 0.420i)17-s + ⋯ |
Λ(s)=(=(91s/2ΓC(s)L(s)(−0.803+0.595i)Λ(2−s)
Λ(s)=(=(91s/2ΓC(s+1/2)L(s)(−0.803+0.595i)Λ(1−s)
Degree: |
2 |
Conductor: |
91
= 7⋅13
|
Sign: |
−0.803+0.595i
|
Analytic conductor: |
0.726638 |
Root analytic conductor: |
0.852431 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ91(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 91, ( :1/2), −0.803+0.595i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(2.5+0.866i)T |
| 13 | 1+(1−3.46i)T |
good | 2 | 1+(0.5−0.866i)T+(−1−1.73i)T2 |
| 3 | 1+3T+3T2 |
| 5 | 1+(1.5+2.59i)T+(−2.5+4.33i)T2 |
| 11 | 1+3T+11T2 |
| 17 | 1+(−1−1.73i)T+(−8.5+14.7i)T2 |
| 19 | 1+T+19T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1+(3.5+6.06i)T+(−14.5+25.1i)T2 |
| 31 | 1+(1.5−2.59i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1−1.73i)T+(−18.5−32.0i)T2 |
| 41 | 1+(1.5+2.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−3.5+6.06i)T+(−21.5−37.2i)T2 |
| 47 | 1+(0.5+0.866i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1.5−2.59i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−2−3.46i)T+(−29.5+51.0i)T2 |
| 61 | 1+13T+61T2 |
| 67 | 1+3T+67T2 |
| 71 | 1+(6.5−11.2i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−6.5+11.2i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−1.5−2.59i)T+(−39.5+68.4i)T2 |
| 83 | 1+83T2 |
| 89 | 1+(3−5.19i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−2.5+4.33i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.17083072304890003935458042810, −12.35600926309536103741998797111, −11.82021533416337375398473062326, −10.54540591994848998103598344623, −9.180931829567947556896723749772, −7.74588984405759713913977021044, −6.70721235102570303894165474320, −5.59003972084021475716683567771, −4.19143906619076892162692347148, 0,
3.04189453050271718744975784464, 5.38223469062928345016302182981, 6.33600266034391586792357201625, 7.37774941531169181062342851270, 9.710119850407055439006879556857, 10.61928492568430797996677418294, 11.03561694622216597655332642963, 12.08027994337324273952628204747, 12.87148941030843382217326914293