L(s) = 1 | + (−0.5 − 0.866i)2-s − 3·3-s + (0.500 − 0.866i)4-s + (−1.5 + 2.59i)5-s + (1.5 + 2.59i)6-s + (−2.5 + 0.866i)7-s − 3·8-s + 6·9-s + 3·10-s − 3·11-s + (−1.50 + 2.59i)12-s + (−1 − 3.46i)13-s + (2 + 1.73i)14-s + (4.5 − 7.79i)15-s + (0.500 + 0.866i)16-s + (1 − 1.73i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s − 1.73·3-s + (0.250 − 0.433i)4-s + (−0.670 + 1.16i)5-s + (0.612 + 1.06i)6-s + (−0.944 + 0.327i)7-s − 1.06·8-s + 2·9-s + 0.948·10-s − 0.904·11-s + (−0.433 + 0.749i)12-s + (−0.277 − 0.960i)13-s + (0.534 + 0.462i)14-s + (1.16 − 2.01i)15-s + (0.125 + 0.216i)16-s + (0.242 − 0.420i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.803 - 0.595i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.803 - 0.595i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (2.5 - 0.866i)T \) |
| 13 | \( 1 + (1 + 3.46i)T \) |
good | 2 | \( 1 + (0.5 + 0.866i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + 3T + 3T^{2} \) |
| 5 | \( 1 + (1.5 - 2.59i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + 3T + 11T^{2} \) |
| 17 | \( 1 + (-1 + 1.73i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + T + 19T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.5 - 6.06i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.5 + 2.59i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1 + 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.5 - 6.06i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.5 + 2.59i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2 + 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 13T + 61T^{2} \) |
| 67 | \( 1 + 3T + 67T^{2} \) |
| 71 | \( 1 + (6.5 + 11.2i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-6.5 - 11.2i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.5 + 2.59i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (3 + 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.5 - 4.33i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.87148941030843382217326914293, −12.08027994337324273952628204747, −11.03561694622216597655332642963, −10.61928492568430797996677418294, −9.710119850407055439006879556857, −7.37774941531169181062342851270, −6.33600266034391586792357201625, −5.38223469062928345016302182981, −3.04189453050271718744975784464, 0,
4.19143906619076892162692347148, 5.59003972084021475716683567771, 6.70721235102570303894165474320, 7.74588984405759713913977021044, 9.180931829567947556896723749772, 10.54540591994848998103598344623, 11.82021533416337375398473062326, 12.35600926309536103741998797111, 13.17083072304890003935458042810