L(s) = 1 | + (1.30 + 2.26i)2-s + (1.11 − 1.93i)3-s + (−2.42 + 4.20i)4-s + (−1.11 − 1.93i)5-s + 5.85·6-s + (−2 + 1.73i)7-s − 7.47·8-s + (−1 − 1.73i)9-s + (2.92 − 5.06i)10-s + (1.5 − 2.59i)11-s + (5.42 + 9.39i)12-s − 13-s + (−6.54 − 2.26i)14-s − 5.00·15-s + (−4.92 − 8.53i)16-s + (−0.736 + 1.27i)17-s + ⋯ |
L(s) = 1 | + (0.925 + 1.60i)2-s + (0.645 − 1.11i)3-s + (−1.21 + 2.10i)4-s + (−0.499 − 0.866i)5-s + 2.38·6-s + (−0.755 + 0.654i)7-s − 2.64·8-s + (−0.333 − 0.577i)9-s + (0.925 − 1.60i)10-s + (0.452 − 0.783i)11-s + (1.56 + 2.71i)12-s − 0.277·13-s + (−1.74 − 0.605i)14-s − 1.29·15-s + (−1.23 − 2.13i)16-s + (−0.178 + 0.309i)17-s + ⋯ |
Λ(s)=(=(91s/2ΓC(s)L(s)(0.386−0.922i)Λ(2−s)
Λ(s)=(=(91s/2ΓC(s+1/2)L(s)(0.386−0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
91
= 7⋅13
|
Sign: |
0.386−0.922i
|
Analytic conductor: |
0.726638 |
Root analytic conductor: |
0.852431 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ91(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 91, ( :1/2), 0.386−0.922i)
|
Particular Values
L(1) |
≈ |
1.23124+0.819000i |
L(21) |
≈ |
1.23124+0.819000i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(2−1.73i)T |
| 13 | 1+T |
good | 2 | 1+(−1.30−2.26i)T+(−1+1.73i)T2 |
| 3 | 1+(−1.11+1.93i)T+(−1.5−2.59i)T2 |
| 5 | 1+(1.11+1.93i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−1.5+2.59i)T+(−5.5−9.52i)T2 |
| 17 | 1+(0.736−1.27i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.5+2.59i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−4.11−7.13i)T+(−11.5+19.9i)T2 |
| 29 | 1−4.47T+29T2 |
| 31 | 1+(2.5−4.33i)T+(−15.5−26.8i)T2 |
| 37 | 1+(2.35+4.07i)T+(−18.5+32.0i)T2 |
| 41 | 1+4.47T+41T2 |
| 43 | 1+8T+43T2 |
| 47 | 1+(−3.73−6.47i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−3.73+6.47i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−0.736+1.27i)T+(−29.5−51.0i)T2 |
| 61 | 1+(1.5+2.59i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−1.5+2.59i)T+(−33.5−58.0i)T2 |
| 71 | 1+8.94T+71T2 |
| 73 | 1+(−1.35+2.34i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−1.35−2.34i)T+(−39.5+68.4i)T2 |
| 83 | 1+83T2 |
| 89 | 1+(1.11+1.93i)T+(−44.5+77.0i)T2 |
| 97 | 1−9.41T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.20626976383485173222061194435, −13.30654486884255639490446195010, −12.76409423261741952593782406923, −11.91510771744855902170491470600, −8.946273652550477929618178825074, −8.458333016419311493913696830101, −7.28707580737416211507804133607, −6.37522657177174766914774324039, −5.05436121462349775984850677814, −3.35327604878179764201177913968,
2.82081953332938905818375982573, 3.77734419038093641113834944118, 4.64406321105409139521068003200, 6.77337655772861857255230814779, 9.025745998523202722389118705428, 10.19511879307132675294626325601, 10.41507271308888056682771179061, 11.71423185081363697482551012281, 12.75344849804855770208887521365, 13.89616788215796578725131254382