L(s) = 1 | + (1.30 + 2.26i)2-s + (1.11 − 1.93i)3-s + (−2.42 + 4.20i)4-s + (−1.11 − 1.93i)5-s + 5.85·6-s + (−2 + 1.73i)7-s − 7.47·8-s + (−1 − 1.73i)9-s + (2.92 − 5.06i)10-s + (1.5 − 2.59i)11-s + (5.42 + 9.39i)12-s − 13-s + (−6.54 − 2.26i)14-s − 5.00·15-s + (−4.92 − 8.53i)16-s + (−0.736 + 1.27i)17-s + ⋯ |
L(s) = 1 | + (0.925 + 1.60i)2-s + (0.645 − 1.11i)3-s + (−1.21 + 2.10i)4-s + (−0.499 − 0.866i)5-s + 2.38·6-s + (−0.755 + 0.654i)7-s − 2.64·8-s + (−0.333 − 0.577i)9-s + (0.925 − 1.60i)10-s + (0.452 − 0.783i)11-s + (1.56 + 2.71i)12-s − 0.277·13-s + (−1.74 − 0.605i)14-s − 1.29·15-s + (−1.23 − 2.13i)16-s + (−0.178 + 0.309i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.23124 + 0.819000i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.23124 + 0.819000i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (2 - 1.73i)T \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + (-1.30 - 2.26i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.11 + 1.93i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1.11 + 1.93i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.736 - 1.27i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.5 + 2.59i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.11 - 7.13i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 4.47T + 29T^{2} \) |
| 31 | \( 1 + (2.5 - 4.33i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.35 + 4.07i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 4.47T + 41T^{2} \) |
| 43 | \( 1 + 8T + 43T^{2} \) |
| 47 | \( 1 + (-3.73 - 6.47i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.73 + 6.47i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.736 + 1.27i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.5 + 2.59i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.5 + 2.59i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 8.94T + 71T^{2} \) |
| 73 | \( 1 + (-1.35 + 2.34i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.35 - 2.34i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (1.11 + 1.93i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 9.41T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.20626976383485173222061194435, −13.30654486884255639490446195010, −12.76409423261741952593782406923, −11.91510771744855902170491470600, −8.946273652550477929618178825074, −8.458333016419311493913696830101, −7.28707580737416211507804133607, −6.37522657177174766914774324039, −5.05436121462349775984850677814, −3.35327604878179764201177913968,
2.82081953332938905818375982573, 3.77734419038093641113834944118, 4.64406321105409139521068003200, 6.77337655772861857255230814779, 9.025745998523202722389118705428, 10.19511879307132675294626325601, 10.41507271308888056682771179061, 11.71423185081363697482551012281, 12.75344849804855770208887521365, 13.89616788215796578725131254382