L(s) = 1 | + (1.30 − 2.26i)2-s + (1.11 + 1.93i)3-s + (−2.42 − 4.20i)4-s + (−1.11 + 1.93i)5-s + 5.85·6-s + (−2 − 1.73i)7-s − 7.47·8-s + (−1 + 1.73i)9-s + (2.92 + 5.06i)10-s + (1.5 + 2.59i)11-s + (5.42 − 9.39i)12-s − 13-s + (−6.54 + 2.26i)14-s − 5.00·15-s + (−4.92 + 8.53i)16-s + (−0.736 − 1.27i)17-s + ⋯ |
L(s) = 1 | + (0.925 − 1.60i)2-s + (0.645 + 1.11i)3-s + (−1.21 − 2.10i)4-s + (−0.499 + 0.866i)5-s + 2.38·6-s + (−0.755 − 0.654i)7-s − 2.64·8-s + (−0.333 + 0.577i)9-s + (0.925 + 1.60i)10-s + (0.452 + 0.783i)11-s + (1.56 − 2.71i)12-s − 0.277·13-s + (−1.74 + 0.605i)14-s − 1.29·15-s + (−1.23 + 2.13i)16-s + (−0.178 − 0.309i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.23124 - 0.819000i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.23124 - 0.819000i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (2 + 1.73i)T \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + (-1.30 + 2.26i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.11 - 1.93i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (1.11 - 1.93i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (0.736 + 1.27i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.5 - 2.59i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.11 + 7.13i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 4.47T + 29T^{2} \) |
| 31 | \( 1 + (2.5 + 4.33i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.35 - 4.07i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 4.47T + 41T^{2} \) |
| 43 | \( 1 + 8T + 43T^{2} \) |
| 47 | \( 1 + (-3.73 + 6.47i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.73 - 6.47i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.736 - 1.27i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.5 - 2.59i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.5 - 2.59i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 8.94T + 71T^{2} \) |
| 73 | \( 1 + (-1.35 - 2.34i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.35 + 2.34i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (1.11 - 1.93i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 9.41T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.89616788215796578725131254382, −12.75344849804855770208887521365, −11.71423185081363697482551012281, −10.41507271308888056682771179061, −10.19511879307132675294626325601, −9.025745998523202722389118705428, −6.77337655772861857255230814779, −4.64406321105409139521068003200, −3.77734419038093641113834944118, −2.82081953332938905818375982573,
3.35327604878179764201177913968, 5.05436121462349775984850677814, 6.37522657177174766914774324039, 7.28707580737416211507804133607, 8.458333016419311493913696830101, 8.946273652550477929618178825074, 11.91510771744855902170491470600, 12.76409423261741952593782406923, 13.30654486884255639490446195010, 14.20626976383485173222061194435