L(s) = 1 | + (0.866 + 0.5i)2-s + (1.57 − 0.724i)3-s + (0.499 + 0.866i)4-s + (−1.81 + 1.30i)5-s + (1.72 + 0.158i)6-s + (−3.85 − 2.22i)7-s + 0.999i·8-s + (1.94 − 2.28i)9-s + (−2.22 + 0.224i)10-s + (−0.724 + 1.25i)11-s + (1.41 + i)12-s + (2.12 − 1.22i)13-s + (−2.22 − 3.85i)14-s + (−1.90 + 3.37i)15-s + (−0.5 + 0.866i)16-s + 3.89i·17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.908 − 0.418i)3-s + (0.249 + 0.433i)4-s + (−0.811 + 0.584i)5-s + (0.704 + 0.0648i)6-s + (−1.45 − 0.840i)7-s + 0.353i·8-s + (0.649 − 0.760i)9-s + (−0.703 + 0.0710i)10-s + (−0.218 + 0.378i)11-s + (0.408 + 0.288i)12-s + (0.588 − 0.339i)13-s + (−0.594 − 1.02i)14-s + (−0.492 + 0.870i)15-s + (−0.125 + 0.216i)16-s + 0.945i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 - 0.262i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 - 0.262i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.38736 + 0.185602i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.38736 + 0.185602i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (-1.57 + 0.724i)T \) |
| 5 | \( 1 + (1.81 - 1.30i)T \) |
good | 7 | \( 1 + (3.85 + 2.22i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.724 - 1.25i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.12 + 1.22i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 3.89iT - 17T^{2} \) |
| 19 | \( 1 - 0.550T + 19T^{2} \) |
| 23 | \( 1 + (-2.51 + 1.44i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3 - 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.22 + 5.58i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 8iT - 37T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.45 - 3.72i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.389 + 0.224i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 8.44iT - 53T^{2} \) |
| 59 | \( 1 + (5.62 + 9.74i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.224 + 0.389i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-8.18 + 4.72i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 2.44T + 71T^{2} \) |
| 73 | \( 1 - 4.79iT - 73T^{2} \) |
| 79 | \( 1 + (3.67 - 6.36i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.46 + 2i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 12.8T + 89T^{2} \) |
| 97 | \( 1 + (11.2 + 6.5i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.17467893097328759480392022460, −13.03498771505224042998651915741, −12.65067253081451093811452447657, −10.98223313798292145897231462838, −9.764053461889174124066589696630, −8.233178006023554614173165979508, −7.19940273509319772460285987318, −6.41039935120279862995092961411, −3.96718856080354666891603288247, −3.13343893345047280814276023466,
2.88985220502493558871282011110, 3.96963944904665922993769664424, 5.55387967066356602848588482080, 7.26795141191650353583965647233, 8.851178632670324600509652836942, 9.461483220451065979342472346512, 10.95230793654349760257052016475, 12.21117089253933826169534465305, 13.03593206412215795745641566182, 13.90259167296091556841429834919