L(s) = 1 | + (1.60 − 0.430i)3-s + (−1.94 − 0.522i)5-s + (−1.89 + 1.85i)7-s + (−0.196 + 0.113i)9-s + (−1.63 − 6.09i)11-s + (−1.13 − 1.13i)13-s − 3.35·15-s + (−0.960 + 1.66i)17-s + (−1.63 + 6.09i)19-s + (−2.24 + 3.79i)21-s + (−0.924 + 0.533i)23-s + (−0.804 − 0.464i)25-s + (−3.79 + 3.79i)27-s + (−5.08 − 5.08i)29-s + (−0.198 + 0.343i)31-s + ⋯ |
L(s) = 1 | + (0.928 − 0.248i)3-s + (−0.871 − 0.233i)5-s + (−0.714 + 0.699i)7-s + (−0.0655 + 0.0378i)9-s + (−0.492 − 1.83i)11-s + (−0.314 − 0.314i)13-s − 0.867·15-s + (−0.233 + 0.403i)17-s + (−0.374 + 1.39i)19-s + (−0.489 + 0.827i)21-s + (−0.192 + 0.111i)23-s + (−0.160 − 0.0928i)25-s + (−0.731 + 0.731i)27-s + (−0.945 − 0.945i)29-s + (−0.0356 + 0.0616i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0679i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 + 0.0679i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00881009 - 0.258930i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00881009 - 0.258930i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (1.89 - 1.85i)T \) |
good | 3 | \( 1 + (-1.60 + 0.430i)T + (2.59 - 1.5i)T^{2} \) |
| 5 | \( 1 + (1.94 + 0.522i)T + (4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (1.63 + 6.09i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (1.13 + 1.13i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.960 - 1.66i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.63 - 6.09i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (0.924 - 0.533i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (5.08 + 5.08i)T + 29iT^{2} \) |
| 31 | \( 1 + (0.198 - 0.343i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.327 + 0.0877i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 7.26iT - 41T^{2} \) |
| 43 | \( 1 + (1.75 - 1.75i)T - 43iT^{2} \) |
| 47 | \( 1 + (1.08 + 1.87i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.111 + 0.415i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-2.32 - 8.67i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-2.72 + 10.1i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (7.87 - 2.10i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 2.78iT - 71T^{2} \) |
| 73 | \( 1 + (-2.05 - 1.18i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.10 - 8.84i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.17 + 1.17i)T + 83iT^{2} \) |
| 89 | \( 1 + (-11.0 + 6.37i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 2.21T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.509477720502924653576464562338, −8.475646659071752026313833918224, −8.318121640149260802322180141616, −7.49192380837928435445167456780, −6.07617657720905269662290495779, −5.53931381490459655184659934194, −3.84901713273039668979755148896, −3.27567119775285607491852284730, −2.20884541567419315849320759584, −0.10032860353281945736331797799,
2.23992852020195747228258699310, 3.22319418840159930241956503605, 4.14838242978459654493904694954, 4.89787493555755274184067254513, 6.59813913480012196996836249783, 7.30326940367950854671090161210, 7.81912630719186594334257650021, 9.047679953444697868585793542450, 9.542212277104231509527766329003, 10.35912599912174529059960816941