Properties

Label 896.2.ba.f.417.9
Level $896$
Weight $2$
Character 896.417
Analytic conductor $7.155$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [896,2,Mod(289,896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("896.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(896, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.ba (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,-4,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 417.9
Character \(\chi\) \(=\) 896.417
Dual form 896.2.ba.f.737.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.60845 - 0.430984i) q^{3} +(-1.94900 - 0.522232i) q^{5} +(-1.89075 + 1.85069i) q^{7} +(-0.196696 + 0.113563i) q^{9} +(-1.63411 - 6.09856i) q^{11} +(-1.13388 - 1.13388i) q^{13} -3.35995 q^{15} +(-0.960789 + 1.66414i) q^{17} +(-1.63324 + 6.09532i) q^{19} +(-2.24357 + 3.79164i) q^{21} +(-0.924606 + 0.533821i) q^{23} +(-0.804265 - 0.464342i) q^{25} +(-3.79985 + 3.79985i) q^{27} +(-5.08936 - 5.08936i) q^{29} +(-0.198293 + 0.343454i) q^{31} +(-5.25677 - 9.10499i) q^{33} +(4.65156 - 2.61958i) q^{35} +(-0.327303 - 0.0877006i) q^{37} +(-2.31247 - 1.33510i) q^{39} -7.26189i q^{41} +(-1.75565 + 1.75565i) q^{43} +(0.442666 - 0.118612i) q^{45} +(-1.08118 - 1.87265i) q^{47} +(0.149895 - 6.99839i) q^{49} +(-0.828170 + 3.09077i) q^{51} +(-0.111394 - 0.415727i) q^{53} +12.7395i q^{55} +10.5079i q^{57} +(2.32453 + 8.67527i) q^{59} +(2.72673 - 10.1763i) q^{61} +(0.161735 - 0.578743i) q^{63} +(1.61777 + 2.80206i) q^{65} +(-7.87441 + 2.10994i) q^{67} +(-1.25712 + 1.25712i) q^{69} +2.78982i q^{71} +(2.05730 + 1.18779i) q^{73} +(-1.49375 - 0.400248i) q^{75} +(14.3762 + 8.50666i) q^{77} +(5.10829 + 8.84782i) q^{79} +(-4.13352 + 7.15947i) q^{81} +(-1.17951 - 1.17951i) q^{83} +(2.74164 - 2.74164i) q^{85} +(-10.3794 - 5.99257i) q^{87} +(11.0470 - 6.37800i) q^{89} +(4.24233 + 0.0454269i) q^{91} +(-0.170922 + 0.637891i) q^{93} +(6.36634 - 11.0268i) q^{95} -2.21148 q^{97} +(1.01399 + 1.01399i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{5} + 4 q^{11} + 24 q^{13} - 40 q^{15} + 8 q^{17} + 4 q^{19} + 8 q^{21} + 24 q^{27} - 24 q^{29} + 28 q^{31} + 16 q^{33} - 28 q^{35} + 24 q^{37} + 40 q^{43} + 28 q^{45} - 20 q^{47} - 24 q^{51}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.60845 0.430984i 0.928642 0.248829i 0.237366 0.971420i \(-0.423716\pi\)
0.691275 + 0.722591i \(0.257049\pi\)
\(4\) 0 0
\(5\) −1.94900 0.522232i −0.871618 0.233549i −0.204831 0.978797i \(-0.565664\pi\)
−0.666787 + 0.745248i \(0.732331\pi\)
\(6\) 0 0
\(7\) −1.89075 + 1.85069i −0.714638 + 0.699495i
\(8\) 0 0
\(9\) −0.196696 + 0.113563i −0.0655654 + 0.0378542i
\(10\) 0 0
\(11\) −1.63411 6.09856i −0.492701 1.83879i −0.542542 0.840029i \(-0.682538\pi\)
0.0498403 0.998757i \(-0.484129\pi\)
\(12\) 0 0
\(13\) −1.13388 1.13388i −0.314480 0.314480i 0.532162 0.846642i \(-0.321380\pi\)
−0.846642 + 0.532162i \(0.821380\pi\)
\(14\) 0 0
\(15\) −3.35995 −0.867535
\(16\) 0 0
\(17\) −0.960789 + 1.66414i −0.233026 + 0.403612i −0.958697 0.284429i \(-0.908196\pi\)
0.725671 + 0.688041i \(0.241529\pi\)
\(18\) 0 0
\(19\) −1.63324 + 6.09532i −0.374690 + 1.39836i 0.479107 + 0.877756i \(0.340960\pi\)
−0.853797 + 0.520605i \(0.825706\pi\)
\(20\) 0 0
\(21\) −2.24357 + 3.79164i −0.489588 + 0.827403i
\(22\) 0 0
\(23\) −0.924606 + 0.533821i −0.192794 + 0.111309i −0.593290 0.804989i \(-0.702171\pi\)
0.400496 + 0.916298i \(0.368838\pi\)
\(24\) 0 0
\(25\) −0.804265 0.464342i −0.160853 0.0928685i
\(26\) 0 0
\(27\) −3.79985 + 3.79985i −0.731281 + 0.731281i
\(28\) 0 0
\(29\) −5.08936 5.08936i −0.945070 0.945070i 0.0534979 0.998568i \(-0.482963\pi\)
−0.998568 + 0.0534979i \(0.982963\pi\)
\(30\) 0 0
\(31\) −0.198293 + 0.343454i −0.0356145 + 0.0616861i −0.883283 0.468840i \(-0.844672\pi\)
0.847669 + 0.530526i \(0.178006\pi\)
\(32\) 0 0
\(33\) −5.25677 9.10499i −0.915086 1.58498i
\(34\) 0 0
\(35\) 4.65156 2.61958i 0.786257 0.442789i
\(36\) 0 0
\(37\) −0.327303 0.0877006i −0.0538083 0.0144179i 0.231814 0.972760i \(-0.425534\pi\)
−0.285623 + 0.958342i \(0.592200\pi\)
\(38\) 0 0
\(39\) −2.31247 1.33510i −0.370291 0.213788i
\(40\) 0 0
\(41\) 7.26189i 1.13412i −0.823678 0.567058i \(-0.808081\pi\)
0.823678 0.567058i \(-0.191919\pi\)
\(42\) 0 0
\(43\) −1.75565 + 1.75565i −0.267734 + 0.267734i −0.828187 0.560452i \(-0.810627\pi\)
0.560452 + 0.828187i \(0.310627\pi\)
\(44\) 0 0
\(45\) 0.442666 0.118612i 0.0659888 0.0176816i
\(46\) 0 0
\(47\) −1.08118 1.87265i −0.157706 0.273155i 0.776335 0.630320i \(-0.217076\pi\)
−0.934041 + 0.357166i \(0.883743\pi\)
\(48\) 0 0
\(49\) 0.149895 6.99839i 0.0214136 0.999771i
\(50\) 0 0
\(51\) −0.828170 + 3.09077i −0.115967 + 0.432795i
\(52\) 0 0
\(53\) −0.111394 0.415727i −0.0153011 0.0571045i 0.957853 0.287258i \(-0.0927438\pi\)
−0.973154 + 0.230154i \(0.926077\pi\)
\(54\) 0 0
\(55\) 12.7395i 1.71779i
\(56\) 0 0
\(57\) 10.5079i 1.39181i
\(58\) 0 0
\(59\) 2.32453 + 8.67527i 0.302628 + 1.12942i 0.934968 + 0.354732i \(0.115428\pi\)
−0.632340 + 0.774691i \(0.717905\pi\)
\(60\) 0 0
\(61\) 2.72673 10.1763i 0.349122 1.30294i −0.538601 0.842561i \(-0.681047\pi\)
0.887722 0.460379i \(-0.152287\pi\)
\(62\) 0 0
\(63\) 0.161735 0.578743i 0.0203767 0.0729147i
\(64\) 0 0
\(65\) 1.61777 + 2.80206i 0.200660 + 0.347553i
\(66\) 0 0
\(67\) −7.87441 + 2.10994i −0.962012 + 0.257770i −0.705452 0.708758i \(-0.749256\pi\)
−0.256560 + 0.966528i \(0.582589\pi\)
\(68\) 0 0
\(69\) −1.25712 + 1.25712i −0.151339 + 0.151339i
\(70\) 0 0
\(71\) 2.78982i 0.331090i 0.986202 + 0.165545i \(0.0529384\pi\)
−0.986202 + 0.165545i \(0.947062\pi\)
\(72\) 0 0
\(73\) 2.05730 + 1.18779i 0.240789 + 0.139020i 0.615539 0.788106i \(-0.288938\pi\)
−0.374750 + 0.927126i \(0.622272\pi\)
\(74\) 0 0
\(75\) −1.49375 0.400248i −0.172483 0.0462167i
\(76\) 0 0
\(77\) 14.3762 + 8.50666i 1.63832 + 0.969424i
\(78\) 0 0
\(79\) 5.10829 + 8.84782i 0.574727 + 0.995457i 0.996071 + 0.0885562i \(0.0282253\pi\)
−0.421344 + 0.906901i \(0.638441\pi\)
\(80\) 0 0
\(81\) −4.13352 + 7.15947i −0.459280 + 0.795496i
\(82\) 0 0
\(83\) −1.17951 1.17951i −0.129468 0.129468i 0.639404 0.768871i \(-0.279181\pi\)
−0.768871 + 0.639404i \(0.779181\pi\)
\(84\) 0 0
\(85\) 2.74164 2.74164i 0.297373 0.297373i
\(86\) 0 0
\(87\) −10.3794 5.99257i −1.11279 0.642471i
\(88\) 0 0
\(89\) 11.0470 6.37800i 1.17098 0.676066i 0.217070 0.976156i \(-0.430350\pi\)
0.953911 + 0.300089i \(0.0970165\pi\)
\(90\) 0 0
\(91\) 4.24233 + 0.0454269i 0.444717 + 0.00476204i
\(92\) 0 0
\(93\) −0.170922 + 0.637891i −0.0177238 + 0.0661462i
\(94\) 0 0
\(95\) 6.36634 11.0268i 0.653173 1.13133i
\(96\) 0 0
\(97\) −2.21148 −0.224542 −0.112271 0.993678i \(-0.535813\pi\)
−0.112271 + 0.993678i \(0.535813\pi\)
\(98\) 0 0
\(99\) 1.01399 + 1.01399i 0.101910 + 0.101910i
\(100\) 0 0
\(101\) −1.86231 6.95024i −0.185307 0.691575i −0.994565 0.104121i \(-0.966797\pi\)
0.809258 0.587454i \(-0.199870\pi\)
\(102\) 0 0
\(103\) 15.1457 8.74438i 1.49235 0.861609i 0.492390 0.870375i \(-0.336123\pi\)
0.999962 + 0.00876536i \(0.00279014\pi\)
\(104\) 0 0
\(105\) 6.35283 6.21822i 0.619973 0.606836i
\(106\) 0 0
\(107\) −2.90855 0.779344i −0.281180 0.0753420i 0.115473 0.993311i \(-0.463162\pi\)
−0.396653 + 0.917969i \(0.629828\pi\)
\(108\) 0 0
\(109\) −6.86536 + 1.83957i −0.657583 + 0.176199i −0.572155 0.820146i \(-0.693892\pi\)
−0.0854277 + 0.996344i \(0.527226\pi\)
\(110\) 0 0
\(111\) −0.564250 −0.0535562
\(112\) 0 0
\(113\) −5.96535 −0.561173 −0.280586 0.959829i \(-0.590529\pi\)
−0.280586 + 0.959829i \(0.590529\pi\)
\(114\) 0 0
\(115\) 2.08083 0.557557i 0.194039 0.0519925i
\(116\) 0 0
\(117\) 0.351795 + 0.0942631i 0.0325234 + 0.00871463i
\(118\) 0 0
\(119\) −1.26318 4.92459i −0.115796 0.451437i
\(120\) 0 0
\(121\) −24.9959 + 14.4314i −2.27235 + 1.31194i
\(122\) 0 0
\(123\) −3.12976 11.6804i −0.282201 1.05319i
\(124\) 0 0
\(125\) 8.45884 + 8.45884i 0.756582 + 0.756582i
\(126\) 0 0
\(127\) 6.41296 0.569058 0.284529 0.958667i \(-0.408163\pi\)
0.284529 + 0.958667i \(0.408163\pi\)
\(128\) 0 0
\(129\) −2.06723 + 3.58055i −0.182009 + 0.315250i
\(130\) 0 0
\(131\) 3.87298 14.4542i 0.338384 1.26287i −0.561769 0.827294i \(-0.689879\pi\)
0.900154 0.435573i \(-0.143454\pi\)
\(132\) 0 0
\(133\) −8.19250 14.5474i −0.710380 1.26142i
\(134\) 0 0
\(135\) 9.39029 5.42149i 0.808187 0.466607i
\(136\) 0 0
\(137\) 1.50928 + 0.871382i 0.128946 + 0.0744472i 0.563086 0.826399i \(-0.309614\pi\)
−0.434139 + 0.900846i \(0.642947\pi\)
\(138\) 0 0
\(139\) −2.84436 + 2.84436i −0.241256 + 0.241256i −0.817370 0.576114i \(-0.804569\pi\)
0.576114 + 0.817370i \(0.304569\pi\)
\(140\) 0 0
\(141\) −2.54611 2.54611i −0.214421 0.214421i
\(142\) 0 0
\(143\) −5.06214 + 8.76788i −0.423317 + 0.733207i
\(144\) 0 0
\(145\) 7.26132 + 12.5770i 0.603020 + 1.04446i
\(146\) 0 0
\(147\) −2.77510 11.3212i −0.228886 0.933757i
\(148\) 0 0
\(149\) 17.7848 + 4.76543i 1.45699 + 0.390399i 0.898449 0.439077i \(-0.144695\pi\)
0.558541 + 0.829477i \(0.311361\pi\)
\(150\) 0 0
\(151\) −5.52437 3.18949i −0.449567 0.259557i 0.258081 0.966123i \(-0.416910\pi\)
−0.707647 + 0.706566i \(0.750243\pi\)
\(152\) 0 0
\(153\) 0.436439i 0.0352840i
\(154\) 0 0
\(155\) 0.565835 0.565835i 0.0454490 0.0454490i
\(156\) 0 0
\(157\) −17.6177 + 4.72065i −1.40605 + 0.376749i −0.880512 0.474024i \(-0.842801\pi\)
−0.525534 + 0.850773i \(0.676134\pi\)
\(158\) 0 0
\(159\) −0.358344 0.620669i −0.0284185 0.0492223i
\(160\) 0 0
\(161\) 0.760264 2.72048i 0.0599172 0.214404i
\(162\) 0 0
\(163\) −2.97338 + 11.0968i −0.232893 + 0.869170i 0.746194 + 0.665729i \(0.231879\pi\)
−0.979087 + 0.203441i \(0.934787\pi\)
\(164\) 0 0
\(165\) 5.49051 + 20.4909i 0.427435 + 1.59521i
\(166\) 0 0
\(167\) 21.6693i 1.67682i 0.545040 + 0.838410i \(0.316514\pi\)
−0.545040 + 0.838410i \(0.683486\pi\)
\(168\) 0 0
\(169\) 10.4287i 0.802204i
\(170\) 0 0
\(171\) −0.370949 1.38440i −0.0283672 0.105868i
\(172\) 0 0
\(173\) −3.31175 + 12.3596i −0.251788 + 0.939684i 0.718062 + 0.695979i \(0.245030\pi\)
−0.969849 + 0.243705i \(0.921637\pi\)
\(174\) 0 0
\(175\) 2.38002 0.610487i 0.179913 0.0461485i
\(176\) 0 0
\(177\) 7.47780 + 12.9519i 0.562066 + 0.973527i
\(178\) 0 0
\(179\) −3.05939 + 0.819762i −0.228670 + 0.0612719i −0.371334 0.928499i \(-0.621100\pi\)
0.142665 + 0.989771i \(0.454433\pi\)
\(180\) 0 0
\(181\) 14.3765 14.3765i 1.06860 1.06860i 0.0711279 0.997467i \(-0.477340\pi\)
0.997467 0.0711279i \(-0.0226598\pi\)
\(182\) 0 0
\(183\) 17.5433i 1.29684i
\(184\) 0 0
\(185\) 0.592113 + 0.341857i 0.0435330 + 0.0251338i
\(186\) 0 0
\(187\) 11.7189 + 3.14006i 0.856969 + 0.229624i
\(188\) 0 0
\(189\) 0.152235 14.2169i 0.0110735 1.03413i
\(190\) 0 0
\(191\) −6.12089 10.6017i −0.442892 0.767111i 0.555011 0.831843i \(-0.312714\pi\)
−0.997903 + 0.0647319i \(0.979381\pi\)
\(192\) 0 0
\(193\) 1.08900 1.88620i 0.0783877 0.135771i −0.824167 0.566347i \(-0.808356\pi\)
0.902554 + 0.430576i \(0.141689\pi\)
\(194\) 0 0
\(195\) 3.80976 + 3.80976i 0.272823 + 0.272823i
\(196\) 0 0
\(197\) −9.97878 + 9.97878i −0.710959 + 0.710959i −0.966736 0.255777i \(-0.917669\pi\)
0.255777 + 0.966736i \(0.417669\pi\)
\(198\) 0 0
\(199\) −9.14271 5.27854i −0.648109 0.374186i 0.139622 0.990205i \(-0.455411\pi\)
−0.787731 + 0.616019i \(0.788745\pi\)
\(200\) 0 0
\(201\) −11.7563 + 6.78749i −0.829224 + 0.478753i
\(202\) 0 0
\(203\) 19.0415 + 0.203897i 1.33645 + 0.0143108i
\(204\) 0 0
\(205\) −3.79239 + 14.1534i −0.264872 + 0.988516i
\(206\) 0 0
\(207\) 0.121244 0.210001i 0.00842706 0.0145961i
\(208\) 0 0
\(209\) 39.8416 2.75590
\(210\) 0 0
\(211\) −5.20378 5.20378i −0.358243 0.358243i 0.504922 0.863165i \(-0.331521\pi\)
−0.863165 + 0.504922i \(0.831521\pi\)
\(212\) 0 0
\(213\) 1.20237 + 4.48730i 0.0823849 + 0.307464i
\(214\) 0 0
\(215\) 4.33862 2.50490i 0.295891 0.170833i
\(216\) 0 0
\(217\) −0.260703 1.01636i −0.0176977 0.0689953i
\(218\) 0 0
\(219\) 3.82100 + 1.02383i 0.258199 + 0.0691843i
\(220\) 0 0
\(221\) 2.97634 0.797507i 0.200210 0.0536461i
\(222\) 0 0
\(223\) −22.3888 −1.49926 −0.749632 0.661855i \(-0.769770\pi\)
−0.749632 + 0.661855i \(0.769770\pi\)
\(224\) 0 0
\(225\) 0.210928 0.0140619
\(226\) 0 0
\(227\) 17.9753 4.81647i 1.19306 0.319680i 0.392967 0.919552i \(-0.371448\pi\)
0.800096 + 0.599872i \(0.204782\pi\)
\(228\) 0 0
\(229\) −8.12426 2.17689i −0.536866 0.143853i −0.0198093 0.999804i \(-0.506306\pi\)
−0.517057 + 0.855951i \(0.672973\pi\)
\(230\) 0 0
\(231\) 26.7898 + 7.48664i 1.76264 + 0.492585i
\(232\) 0 0
\(233\) 14.9278 8.61859i 0.977955 0.564623i 0.0763032 0.997085i \(-0.475688\pi\)
0.901652 + 0.432462i \(0.142355\pi\)
\(234\) 0 0
\(235\) 1.12925 + 4.21442i 0.0736642 + 0.274919i
\(236\) 0 0
\(237\) 12.0297 + 12.0297i 0.781414 + 0.781414i
\(238\) 0 0
\(239\) −0.572679 −0.0370435 −0.0185218 0.999828i \(-0.505896\pi\)
−0.0185218 + 0.999828i \(0.505896\pi\)
\(240\) 0 0
\(241\) 5.89318 10.2073i 0.379613 0.657510i −0.611393 0.791327i \(-0.709390\pi\)
0.991006 + 0.133818i \(0.0427237\pi\)
\(242\) 0 0
\(243\) 0.609557 2.27490i 0.0391031 0.145935i
\(244\) 0 0
\(245\) −3.94693 + 13.5616i −0.252160 + 0.866417i
\(246\) 0 0
\(247\) 8.76321 5.05944i 0.557590 0.321925i
\(248\) 0 0
\(249\) −2.40553 1.38883i −0.152444 0.0880137i
\(250\) 0 0
\(251\) 5.57539 5.57539i 0.351916 0.351916i −0.508906 0.860822i \(-0.669950\pi\)
0.860822 + 0.508906i \(0.169950\pi\)
\(252\) 0 0
\(253\) 4.76645 + 4.76645i 0.299664 + 0.299664i
\(254\) 0 0
\(255\) 3.22820 5.59141i 0.202158 0.350148i
\(256\) 0 0
\(257\) −14.5328 25.1715i −0.906528 1.57015i −0.818853 0.574004i \(-0.805390\pi\)
−0.0876753 0.996149i \(-0.527944\pi\)
\(258\) 0 0
\(259\) 0.781156 0.439916i 0.0485387 0.0273351i
\(260\) 0 0
\(261\) 1.57902 + 0.423097i 0.0977388 + 0.0261890i
\(262\) 0 0
\(263\) −15.3142 8.84163i −0.944311 0.545198i −0.0530021 0.998594i \(-0.516879\pi\)
−0.891309 + 0.453396i \(0.850212\pi\)
\(264\) 0 0
\(265\) 0.868424i 0.0533469i
\(266\) 0 0
\(267\) 15.0198 15.0198i 0.919198 0.919198i
\(268\) 0 0
\(269\) −14.4268 + 3.86566i −0.879620 + 0.235693i −0.670243 0.742142i \(-0.733810\pi\)
−0.209377 + 0.977835i \(0.567144\pi\)
\(270\) 0 0
\(271\) 6.93172 + 12.0061i 0.421072 + 0.729319i 0.996045 0.0888543i \(-0.0283205\pi\)
−0.574972 + 0.818173i \(0.694987\pi\)
\(272\) 0 0
\(273\) 6.84317 1.75531i 0.414168 0.106236i
\(274\) 0 0
\(275\) −1.51757 + 5.66364i −0.0915128 + 0.341531i
\(276\) 0 0
\(277\) 0.597472 + 2.22980i 0.0358986 + 0.133975i 0.981550 0.191208i \(-0.0612406\pi\)
−0.945651 + 0.325184i \(0.894574\pi\)
\(278\) 0 0
\(279\) 0.0900747i 0.00539263i
\(280\) 0 0
\(281\) 0.680351i 0.0405863i 0.999794 + 0.0202932i \(0.00645996\pi\)
−0.999794 + 0.0202932i \(0.993540\pi\)
\(282\) 0 0
\(283\) −0.0985120 0.367652i −0.00585593 0.0218546i 0.962936 0.269730i \(-0.0869344\pi\)
−0.968792 + 0.247875i \(0.920268\pi\)
\(284\) 0 0
\(285\) 5.48759 20.4799i 0.325056 1.21313i
\(286\) 0 0
\(287\) 13.4395 + 13.7304i 0.793309 + 0.810482i
\(288\) 0 0
\(289\) 6.65377 + 11.5247i 0.391398 + 0.677921i
\(290\) 0 0
\(291\) −3.55707 + 0.953115i −0.208519 + 0.0558726i
\(292\) 0 0
\(293\) −7.49220 + 7.49220i −0.437699 + 0.437699i −0.891237 0.453538i \(-0.850162\pi\)
0.453538 + 0.891237i \(0.350162\pi\)
\(294\) 0 0
\(295\) 18.1220i 1.05510i
\(296\) 0 0
\(297\) 29.3829 + 16.9643i 1.70497 + 0.984366i
\(298\) 0 0
\(299\) 1.65367 + 0.443101i 0.0956345 + 0.0256252i
\(300\) 0 0
\(301\) 0.0703375 6.56867i 0.00405418 0.378612i
\(302\) 0 0
\(303\) −5.99089 10.3765i −0.344168 0.596116i
\(304\) 0 0
\(305\) −10.6288 + 18.4096i −0.608602 + 1.05413i
\(306\) 0 0
\(307\) 6.27988 + 6.27988i 0.358412 + 0.358412i 0.863227 0.504816i \(-0.168439\pi\)
−0.504816 + 0.863227i \(0.668439\pi\)
\(308\) 0 0
\(309\) 20.5925 20.5925i 1.17147 1.17147i
\(310\) 0 0
\(311\) 8.55685 + 4.94030i 0.485215 + 0.280139i 0.722587 0.691280i \(-0.242953\pi\)
−0.237372 + 0.971419i \(0.576286\pi\)
\(312\) 0 0
\(313\) −14.8734 + 8.58714i −0.840692 + 0.485374i −0.857499 0.514485i \(-0.827983\pi\)
0.0168075 + 0.999859i \(0.494650\pi\)
\(314\) 0 0
\(315\) −0.617459 + 1.04350i −0.0347899 + 0.0587948i
\(316\) 0 0
\(317\) 5.49870 20.5214i 0.308838 1.15260i −0.620754 0.784006i \(-0.713173\pi\)
0.929591 0.368592i \(-0.120160\pi\)
\(318\) 0 0
\(319\) −22.7212 + 39.3543i −1.27214 + 2.20342i
\(320\) 0 0
\(321\) −5.01416 −0.279863
\(322\) 0 0
\(323\) −8.57424 8.57424i −0.477084 0.477084i
\(324\) 0 0
\(325\) 0.385429 + 1.43844i 0.0213798 + 0.0797904i
\(326\) 0 0
\(327\) −10.2498 + 5.91773i −0.566815 + 0.327251i
\(328\) 0 0
\(329\) 5.50994 + 1.53980i 0.303773 + 0.0848921i
\(330\) 0 0
\(331\) −23.3748 6.26326i −1.28479 0.344260i −0.449113 0.893475i \(-0.648260\pi\)
−0.835681 + 0.549215i \(0.814927\pi\)
\(332\) 0 0
\(333\) 0.0743388 0.0199190i 0.00407374 0.00109156i
\(334\) 0 0
\(335\) 16.4491 0.898709
\(336\) 0 0
\(337\) −4.26739 −0.232460 −0.116230 0.993222i \(-0.537081\pi\)
−0.116230 + 0.993222i \(0.537081\pi\)
\(338\) 0 0
\(339\) −9.59499 + 2.57097i −0.521128 + 0.139636i
\(340\) 0 0
\(341\) 2.41861 + 0.648063i 0.130975 + 0.0350946i
\(342\) 0 0
\(343\) 12.6684 + 13.5096i 0.684032 + 0.729452i
\(344\) 0 0
\(345\) 3.10663 1.79361i 0.167255 0.0965648i
\(346\) 0 0
\(347\) 0.0139833 + 0.0521865i 0.000750664 + 0.00280152i 0.966300 0.257418i \(-0.0828717\pi\)
−0.965549 + 0.260220i \(0.916205\pi\)
\(348\) 0 0
\(349\) 15.4928 + 15.4928i 0.829309 + 0.829309i 0.987421 0.158112i \(-0.0505407\pi\)
−0.158112 + 0.987421i \(0.550541\pi\)
\(350\) 0 0
\(351\) 8.61710 0.459947
\(352\) 0 0
\(353\) −8.38161 + 14.5174i −0.446108 + 0.772682i −0.998129 0.0611484i \(-0.980524\pi\)
0.552020 + 0.833831i \(0.313857\pi\)
\(354\) 0 0
\(355\) 1.45693 5.43735i 0.0773259 0.288584i
\(356\) 0 0
\(357\) −4.15420 7.37657i −0.219863 0.390410i
\(358\) 0 0
\(359\) −29.8777 + 17.2499i −1.57689 + 0.910415i −0.581595 + 0.813479i \(0.697571\pi\)
−0.995291 + 0.0969365i \(0.969096\pi\)
\(360\) 0 0
\(361\) −18.0310 10.4102i −0.948998 0.547904i
\(362\) 0 0
\(363\) −33.9851 + 33.9851i −1.78375 + 1.78375i
\(364\) 0 0
\(365\) −3.38938 3.38938i −0.177408 0.177408i
\(366\) 0 0
\(367\) 10.2644 17.7785i 0.535799 0.928032i −0.463325 0.886189i \(-0.653344\pi\)
0.999124 0.0418433i \(-0.0133230\pi\)
\(368\) 0 0
\(369\) 0.824679 + 1.42839i 0.0429311 + 0.0743588i
\(370\) 0 0
\(371\) 0.980000 + 0.579882i 0.0508791 + 0.0301060i
\(372\) 0 0
\(373\) −15.2773 4.09353i −0.791027 0.211955i −0.159386 0.987216i \(-0.550951\pi\)
−0.631641 + 0.775261i \(0.717618\pi\)
\(374\) 0 0
\(375\) 17.2513 + 9.96003i 0.890853 + 0.514334i
\(376\) 0 0
\(377\) 11.5414i 0.594412i
\(378\) 0 0
\(379\) −11.2717 + 11.2717i −0.578987 + 0.578987i −0.934624 0.355637i \(-0.884264\pi\)
0.355637 + 0.934624i \(0.384264\pi\)
\(380\) 0 0
\(381\) 10.3150 2.76388i 0.528451 0.141598i
\(382\) 0 0
\(383\) −5.14594 8.91303i −0.262945 0.455434i 0.704078 0.710123i \(-0.251360\pi\)
−0.967023 + 0.254688i \(0.918027\pi\)
\(384\) 0 0
\(385\) −23.5768 24.0872i −1.20158 1.22760i
\(386\) 0 0
\(387\) 0.145954 0.544707i 0.00741925 0.0276890i
\(388\) 0 0
\(389\) −5.30513 19.7990i −0.268981 1.00385i −0.959769 0.280792i \(-0.909403\pi\)
0.690788 0.723058i \(-0.257264\pi\)
\(390\) 0 0
\(391\) 2.05156i 0.103752i
\(392\) 0 0
\(393\) 24.9181i 1.25695i
\(394\) 0 0
\(395\) −5.33543 19.9121i −0.268454 1.00189i
\(396\) 0 0
\(397\) 2.02632 7.56231i 0.101698 0.379542i −0.896252 0.443546i \(-0.853720\pi\)
0.997950 + 0.0640041i \(0.0203871\pi\)
\(398\) 0 0
\(399\) −19.4469 19.8679i −0.973565 0.994640i
\(400\) 0 0
\(401\) −7.09985 12.2973i −0.354549 0.614098i 0.632491 0.774567i \(-0.282032\pi\)
−0.987041 + 0.160470i \(0.948699\pi\)
\(402\) 0 0
\(403\) 0.614273 0.164594i 0.0305991 0.00819901i
\(404\) 0 0
\(405\) 11.7951 11.7951i 0.586104 0.586104i
\(406\) 0 0
\(407\) 2.13939i 0.106046i
\(408\) 0 0
\(409\) −22.8759 13.2074i −1.13114 0.653065i −0.186920 0.982375i \(-0.559851\pi\)
−0.944222 + 0.329310i \(0.893184\pi\)
\(410\) 0 0
\(411\) 2.80316 + 0.751104i 0.138270 + 0.0370492i
\(412\) 0 0
\(413\) −20.4503 12.1008i −1.00630 0.595442i
\(414\) 0 0
\(415\) 1.68288 + 2.91483i 0.0826092 + 0.143083i
\(416\) 0 0
\(417\) −3.34915 + 5.80091i −0.164009 + 0.284072i
\(418\) 0 0
\(419\) 15.6893 + 15.6893i 0.766471 + 0.766471i 0.977483 0.211012i \(-0.0676759\pi\)
−0.211012 + 0.977483i \(0.567676\pi\)
\(420\) 0 0
\(421\) −25.7068 + 25.7068i −1.25287 + 1.25287i −0.298444 + 0.954427i \(0.596468\pi\)
−0.954427 + 0.298444i \(0.903532\pi\)
\(422\) 0 0
\(423\) 0.425327 + 0.245563i 0.0206801 + 0.0119397i
\(424\) 0 0
\(425\) 1.54546 0.892270i 0.0749657 0.0432815i
\(426\) 0 0
\(427\) 13.6776 + 24.2872i 0.661905 + 1.17534i
\(428\) 0 0
\(429\) −4.36340 + 16.2844i −0.210667 + 0.786220i
\(430\) 0 0
\(431\) 12.3981 21.4741i 0.597194 1.03437i −0.396039 0.918234i \(-0.629616\pi\)
0.993233 0.116137i \(-0.0370510\pi\)
\(432\) 0 0
\(433\) 5.22863 0.251272 0.125636 0.992076i \(-0.459903\pi\)
0.125636 + 0.992076i \(0.459903\pi\)
\(434\) 0 0
\(435\) 17.1000 + 17.1000i 0.819881 + 0.819881i
\(436\) 0 0
\(437\) −1.74371 6.50762i −0.0834131 0.311302i
\(438\) 0 0
\(439\) −19.1771 + 11.0719i −0.915273 + 0.528433i −0.882124 0.471017i \(-0.843887\pi\)
−0.0331491 + 0.999450i \(0.510554\pi\)
\(440\) 0 0
\(441\) 0.765272 + 1.39358i 0.0364415 + 0.0663610i
\(442\) 0 0
\(443\) −21.8067 5.84309i −1.03607 0.277614i −0.299585 0.954070i \(-0.596848\pi\)
−0.736483 + 0.676456i \(0.763515\pi\)
\(444\) 0 0
\(445\) −24.8614 + 6.66159i −1.17854 + 0.315790i
\(446\) 0 0
\(447\) 30.6599 1.45017
\(448\) 0 0
\(449\) −36.3678 −1.71630 −0.858152 0.513396i \(-0.828387\pi\)
−0.858152 + 0.513396i \(0.828387\pi\)
\(450\) 0 0
\(451\) −44.2871 + 11.8667i −2.08540 + 0.558781i
\(452\) 0 0
\(453\) −10.2603 2.74924i −0.482072 0.129171i
\(454\) 0 0
\(455\) −8.24456 2.30402i −0.386511 0.108014i
\(456\) 0 0
\(457\) 21.5807 12.4596i 1.00950 0.582837i 0.0984570 0.995141i \(-0.468609\pi\)
0.911046 + 0.412304i \(0.135276\pi\)
\(458\) 0 0
\(459\) −2.67261 9.97431i −0.124747 0.465561i
\(460\) 0 0
\(461\) 1.60588 + 1.60588i 0.0747933 + 0.0747933i 0.743514 0.668721i \(-0.233158\pi\)
−0.668721 + 0.743514i \(0.733158\pi\)
\(462\) 0 0
\(463\) −14.8176 −0.688634 −0.344317 0.938853i \(-0.611890\pi\)
−0.344317 + 0.938853i \(0.611890\pi\)
\(464\) 0 0
\(465\) 0.666254 1.15399i 0.0308968 0.0535148i
\(466\) 0 0
\(467\) 3.21315 11.9916i 0.148687 0.554907i −0.850877 0.525365i \(-0.823929\pi\)
0.999564 0.0295414i \(-0.00940469\pi\)
\(468\) 0 0
\(469\) 10.9837 18.5625i 0.507181 0.857135i
\(470\) 0 0
\(471\) −26.3028 + 15.1859i −1.21197 + 0.699730i
\(472\) 0 0
\(473\) 13.5759 + 7.83804i 0.624220 + 0.360393i
\(474\) 0 0
\(475\) 4.14387 4.14387i 0.190134 0.190134i
\(476\) 0 0
\(477\) 0.0691218 + 0.0691218i 0.00316487 + 0.00316487i
\(478\) 0 0
\(479\) 1.02709 1.77897i 0.0469288 0.0812831i −0.841607 0.540091i \(-0.818390\pi\)
0.888536 + 0.458808i \(0.151723\pi\)
\(480\) 0 0
\(481\) 0.271679 + 0.470563i 0.0123875 + 0.0214558i
\(482\) 0 0
\(483\) 0.0503645 4.70344i 0.00229166 0.214014i
\(484\) 0 0
\(485\) 4.31018 + 1.15491i 0.195715 + 0.0524417i
\(486\) 0 0
\(487\) −35.4045 20.4408i −1.60433 0.926261i −0.990607 0.136740i \(-0.956338\pi\)
−0.613724 0.789521i \(-0.710329\pi\)
\(488\) 0 0
\(489\) 19.1302i 0.865098i
\(490\) 0 0
\(491\) 0.278015 0.278015i 0.0125466 0.0125466i −0.700806 0.713352i \(-0.747176\pi\)
0.713352 + 0.700806i \(0.247176\pi\)
\(492\) 0 0
\(493\) 13.3592 3.57958i 0.601667 0.161216i
\(494\) 0 0
\(495\) −1.44673 2.50580i −0.0650255 0.112628i
\(496\) 0 0
\(497\) −5.16309 5.27486i −0.231596 0.236610i
\(498\) 0 0
\(499\) 3.19039 11.9067i 0.142822 0.533018i −0.857021 0.515281i \(-0.827687\pi\)
0.999843 0.0177363i \(-0.00564595\pi\)
\(500\) 0 0
\(501\) 9.33912 + 34.8541i 0.417241 + 1.55717i
\(502\) 0 0
\(503\) 0.367839i 0.0164011i 0.999966 + 0.00820057i \(0.00261035\pi\)
−0.999966 + 0.00820057i \(0.997390\pi\)
\(504\) 0 0
\(505\) 14.5186i 0.646068i
\(506\) 0 0
\(507\) −4.49459 16.7740i −0.199612 0.744960i
\(508\) 0 0
\(509\) 2.09820 7.83060i 0.0930012 0.347085i −0.903708 0.428150i \(-0.859165\pi\)
0.996709 + 0.0810649i \(0.0258321\pi\)
\(510\) 0 0
\(511\) −6.08808 + 1.56162i −0.269321 + 0.0690822i
\(512\) 0 0
\(513\) −16.9552 29.3673i −0.748591 1.29660i
\(514\) 0 0
\(515\) −34.0855 + 9.13319i −1.50199 + 0.402457i
\(516\) 0 0
\(517\) −9.65374 + 9.65374i −0.424571 + 0.424571i
\(518\) 0 0
\(519\) 21.3072i 0.935282i
\(520\) 0 0
\(521\) −11.5215 6.65193i −0.504766 0.291427i 0.225914 0.974147i \(-0.427463\pi\)
−0.730679 + 0.682721i \(0.760797\pi\)
\(522\) 0 0
\(523\) 27.4536 + 7.35616i 1.20046 + 0.321663i 0.803013 0.595962i \(-0.203229\pi\)
0.397448 + 0.917625i \(0.369896\pi\)
\(524\) 0 0
\(525\) 3.56504 2.00769i 0.155591 0.0876229i
\(526\) 0 0
\(527\) −0.381036 0.659973i −0.0165982 0.0287489i
\(528\) 0 0
\(529\) −10.9301 + 18.9314i −0.475220 + 0.823106i
\(530\) 0 0
\(531\) −1.44241 1.44241i −0.0625954 0.0625954i
\(532\) 0 0
\(533\) −8.23408 + 8.23408i −0.356657 + 0.356657i
\(534\) 0 0
\(535\) 5.26176 + 3.03788i 0.227486 + 0.131339i
\(536\) 0 0
\(537\) −4.56759 + 2.63710i −0.197106 + 0.113799i
\(538\) 0 0
\(539\) −42.9251 + 10.5220i −1.84892 + 0.453213i
\(540\) 0 0
\(541\) 4.75802 17.7572i 0.204563 0.763441i −0.785019 0.619472i \(-0.787347\pi\)
0.989582 0.143969i \(-0.0459866\pi\)
\(542\) 0 0
\(543\) 16.9279 29.3199i 0.726445 1.25824i
\(544\) 0 0
\(545\) 14.3413 0.614312
\(546\) 0 0
\(547\) 22.9801 + 22.9801i 0.982558 + 0.982558i 0.999850 0.0172930i \(-0.00550479\pi\)
−0.0172930 + 0.999850i \(0.505505\pi\)
\(548\) 0 0
\(549\) 0.619309 + 2.31129i 0.0264315 + 0.0986436i
\(550\) 0 0
\(551\) 39.3334 22.7091i 1.67566 0.967442i
\(552\) 0 0
\(553\) −26.0331 7.27518i −1.10704 0.309372i
\(554\) 0 0
\(555\) 1.09972 + 0.294670i 0.0466806 + 0.0125080i
\(556\) 0 0
\(557\) −4.50327 + 1.20665i −0.190810 + 0.0511273i −0.352958 0.935639i \(-0.614824\pi\)
0.162149 + 0.986766i \(0.448158\pi\)
\(558\) 0 0
\(559\) 3.98138 0.168394
\(560\) 0 0
\(561\) 20.2026 0.852954
\(562\) 0 0
\(563\) 4.04301 1.08332i 0.170393 0.0456566i −0.172614 0.984990i \(-0.555221\pi\)
0.343007 + 0.939333i \(0.388555\pi\)
\(564\) 0 0
\(565\) 11.6264 + 3.11530i 0.489128 + 0.131061i
\(566\) 0 0
\(567\) −5.43448 21.1866i −0.228227 0.889755i
\(568\) 0 0
\(569\) 3.88173 2.24111i 0.162730 0.0939524i −0.416423 0.909171i \(-0.636717\pi\)
0.579154 + 0.815218i \(0.303383\pi\)
\(570\) 0 0
\(571\) 0.126176 + 0.470896i 0.00528031 + 0.0197064i 0.968516 0.248952i \(-0.0800863\pi\)
−0.963235 + 0.268659i \(0.913420\pi\)
\(572\) 0 0
\(573\) −14.4143 14.4143i −0.602167 0.602167i
\(574\) 0 0
\(575\) 0.991504 0.0413486
\(576\) 0 0
\(577\) 5.31982 9.21420i 0.221467 0.383592i −0.733787 0.679380i \(-0.762249\pi\)
0.955254 + 0.295788i \(0.0955821\pi\)
\(578\) 0 0
\(579\) 0.938680 3.50320i 0.0390102 0.145588i
\(580\) 0 0
\(581\) 4.41305 + 0.0472550i 0.183084 + 0.00196047i
\(582\) 0 0
\(583\) −2.35331 + 1.35868i −0.0974641 + 0.0562709i
\(584\) 0 0
\(585\) −0.636420 0.367437i −0.0263127 0.0151917i
\(586\) 0 0
\(587\) 13.2861 13.2861i 0.548376 0.548376i −0.377595 0.925971i \(-0.623249\pi\)
0.925971 + 0.377595i \(0.123249\pi\)
\(588\) 0 0
\(589\) −1.76960 1.76960i −0.0729151 0.0729151i
\(590\) 0 0
\(591\) −11.7497 + 20.3511i −0.483319 + 0.837133i
\(592\) 0 0
\(593\) 0.198497 + 0.343806i 0.00815128 + 0.0141184i 0.870072 0.492924i \(-0.164072\pi\)
−0.861921 + 0.507043i \(0.830739\pi\)
\(594\) 0 0
\(595\) −0.109840 + 10.2577i −0.00450298 + 0.420524i
\(596\) 0 0
\(597\) −16.9806 4.54994i −0.694970 0.186217i
\(598\) 0 0
\(599\) 11.9718 + 6.91190i 0.489153 + 0.282412i 0.724223 0.689566i \(-0.242199\pi\)
−0.235070 + 0.971978i \(0.575532\pi\)
\(600\) 0 0
\(601\) 8.73396i 0.356266i −0.984006 0.178133i \(-0.942994\pi\)
0.984006 0.178133i \(-0.0570057\pi\)
\(602\) 0 0
\(603\) 1.30926 1.30926i 0.0533170 0.0533170i
\(604\) 0 0
\(605\) 56.2535 15.0731i 2.28703 0.612807i
\(606\) 0 0
\(607\) 14.3937 + 24.9305i 0.584220 + 1.01190i 0.994972 + 0.100152i \(0.0319330\pi\)
−0.410752 + 0.911747i \(0.634734\pi\)
\(608\) 0 0
\(609\) 30.7153 7.87864i 1.24465 0.319259i
\(610\) 0 0
\(611\) −0.897436 + 3.34928i −0.0363064 + 0.135497i
\(612\) 0 0
\(613\) −9.13486 34.0918i −0.368954 1.37695i −0.861981 0.506940i \(-0.830777\pi\)
0.493028 0.870014i \(-0.335890\pi\)
\(614\) 0 0
\(615\) 24.3996i 0.983886i
\(616\) 0 0
\(617\) 33.4612i 1.34710i 0.739143 + 0.673548i \(0.235231\pi\)
−0.739143 + 0.673548i \(0.764769\pi\)
\(618\) 0 0
\(619\) 2.41362 + 9.00777i 0.0970118 + 0.362053i 0.997317 0.0732067i \(-0.0233233\pi\)
−0.900305 + 0.435260i \(0.856657\pi\)
\(620\) 0 0
\(621\) 1.48492 5.54180i 0.0595878 0.222385i
\(622\) 0 0
\(623\) −9.08349 + 32.5038i −0.363922 + 1.30224i
\(624\) 0 0
\(625\) −9.74706 16.8824i −0.389882 0.675296i
\(626\) 0 0
\(627\) 64.0834 17.1711i 2.55924 0.685747i
\(628\) 0 0
\(629\) 0.460415 0.460415i 0.0183580 0.0183580i
\(630\) 0 0
\(631\) 22.2587i 0.886105i 0.896496 + 0.443053i \(0.146104\pi\)
−0.896496 + 0.443053i \(0.853896\pi\)
\(632\) 0 0
\(633\) −10.6128 6.12730i −0.421821 0.243538i
\(634\) 0 0
\(635\) −12.4988 3.34905i −0.496001 0.132903i
\(636\) 0 0
\(637\) −8.10527 + 7.76534i −0.321142 + 0.307674i
\(638\) 0 0
\(639\) −0.316819 0.548747i −0.0125332 0.0217081i
\(640\) 0 0
\(641\) 4.13758 7.16649i 0.163424 0.283059i −0.772670 0.634808i \(-0.781079\pi\)
0.936095 + 0.351748i \(0.114413\pi\)
\(642\) 0 0
\(643\) −4.19175 4.19175i −0.165307 0.165307i 0.619606 0.784913i \(-0.287292\pi\)
−0.784913 + 0.619606i \(0.787292\pi\)
\(644\) 0 0
\(645\) 5.89890 5.89890i 0.232269 0.232269i
\(646\) 0 0
\(647\) 18.2428 + 10.5325i 0.717199 + 0.414075i 0.813721 0.581256i \(-0.197439\pi\)
−0.0965221 + 0.995331i \(0.530772\pi\)
\(648\) 0 0
\(649\) 49.1081 28.3526i 1.92766 1.11294i
\(650\) 0 0
\(651\) −0.857366 1.52242i −0.0336028 0.0596683i
\(652\) 0 0
\(653\) −4.43173 + 16.5394i −0.173427 + 0.647239i 0.823387 + 0.567480i \(0.192082\pi\)
−0.996814 + 0.0797585i \(0.974585\pi\)
\(654\) 0 0
\(655\) −15.0969 + 26.1485i −0.589883 + 1.02171i
\(656\) 0 0
\(657\) −0.539552 −0.0210499
\(658\) 0 0
\(659\) −19.9513 19.9513i −0.777192 0.777192i 0.202161 0.979352i \(-0.435204\pi\)
−0.979352 + 0.202161i \(0.935204\pi\)
\(660\) 0 0
\(661\) 5.55822 + 20.7436i 0.216190 + 0.806831i 0.985744 + 0.168250i \(0.0538117\pi\)
−0.769555 + 0.638581i \(0.779522\pi\)
\(662\) 0 0
\(663\) 4.44359 2.56551i 0.172575 0.0996361i
\(664\) 0 0
\(665\) 8.37005 + 32.6311i 0.324577 + 1.26538i
\(666\) 0 0
\(667\) 7.42246 + 1.98884i 0.287399 + 0.0770083i
\(668\) 0 0
\(669\) −36.0114 + 9.64922i −1.39228 + 0.373060i
\(670\) 0 0
\(671\) −66.5165 −2.56784
\(672\) 0 0
\(673\) 21.0339 0.810796 0.405398 0.914140i \(-0.367133\pi\)
0.405398 + 0.914140i \(0.367133\pi\)
\(674\) 0 0
\(675\) 4.82051 1.29165i 0.185542 0.0497157i
\(676\) 0 0
\(677\) −6.02033 1.61314i −0.231380 0.0619982i 0.141266 0.989972i \(-0.454883\pi\)
−0.372646 + 0.927974i \(0.621549\pi\)
\(678\) 0 0
\(679\) 4.18137 4.09277i 0.160466 0.157066i
\(680\) 0 0
\(681\) 26.8367 15.4942i 1.02838 0.593737i
\(682\) 0 0
\(683\) 5.78001 + 21.5713i 0.221166 + 0.825402i 0.983904 + 0.178695i \(0.0571876\pi\)
−0.762739 + 0.646707i \(0.776146\pi\)
\(684\) 0 0
\(685\) −2.48651 2.48651i −0.0950048 0.0950048i
\(686\) 0 0
\(687\) −14.0057 −0.534351
\(688\) 0 0
\(689\) −0.345076 + 0.597689i −0.0131463 + 0.0227701i
\(690\) 0 0
\(691\) −9.94413 + 37.1120i −0.378292 + 1.41181i 0.470182 + 0.882570i \(0.344188\pi\)
−0.848474 + 0.529237i \(0.822478\pi\)
\(692\) 0 0
\(693\) −3.79379 0.0406240i −0.144114 0.00154318i
\(694\) 0 0
\(695\) 7.02907 4.05824i 0.266628 0.153938i
\(696\) 0 0
\(697\) 12.0848 + 6.97715i 0.457743 + 0.264278i
\(698\) 0 0
\(699\) 20.2963 20.2963i 0.767676 0.767676i
\(700\) 0 0
\(701\) −1.40129 1.40129i −0.0529259 0.0529259i 0.680148 0.733074i \(-0.261915\pi\)
−0.733074 + 0.680148i \(0.761915\pi\)
\(702\) 0 0
\(703\) 1.06913 1.85178i 0.0403229 0.0698413i
\(704\) 0 0
\(705\) 3.63270 + 6.29202i 0.136815 + 0.236971i
\(706\) 0 0
\(707\) 16.3839 + 9.69463i 0.616181 + 0.364604i
\(708\) 0 0
\(709\) 8.42034 + 2.25622i 0.316232 + 0.0847342i 0.413444 0.910530i \(-0.364326\pi\)
−0.0972117 + 0.995264i \(0.530992\pi\)
\(710\) 0 0
\(711\) −2.00956 1.16022i −0.0753645 0.0435117i
\(712\) 0 0
\(713\) 0.423412i 0.0158569i
\(714\) 0 0
\(715\) 14.4450 14.4450i 0.540211 0.540211i
\(716\) 0 0
\(717\) −0.921129 + 0.246816i −0.0344002 + 0.00921750i
\(718\) 0 0
\(719\) −13.3330 23.0934i −0.497236 0.861239i 0.502758 0.864427i \(-0.332319\pi\)
−0.999995 + 0.00318810i \(0.998985\pi\)
\(720\) 0 0
\(721\) −12.4537 + 44.5635i −0.463799 + 1.65963i
\(722\) 0 0
\(723\) 5.07974 18.9578i 0.188917 0.705050i
\(724\) 0 0
\(725\) 1.72999 + 6.45640i 0.0642501 + 0.239785i
\(726\) 0 0
\(727\) 37.7224i 1.39905i −0.714610 0.699523i \(-0.753396\pi\)
0.714610 0.699523i \(-0.246604\pi\)
\(728\) 0 0
\(729\) 28.7229i 1.06381i
\(730\) 0 0
\(731\) −1.23483 4.60846i −0.0456719 0.170450i
\(732\) 0 0
\(733\) −5.88050 + 21.9463i −0.217201 + 0.810606i 0.768179 + 0.640235i \(0.221163\pi\)
−0.985380 + 0.170371i \(0.945504\pi\)
\(734\) 0 0
\(735\) −0.503639 + 23.5142i −0.0185770 + 0.867336i
\(736\) 0 0
\(737\) 25.7352 + 44.5747i 0.947969 + 1.64193i
\(738\) 0 0
\(739\) −25.3304 + 6.78727i −0.931795 + 0.249674i −0.692620 0.721303i \(-0.743544\pi\)
−0.239175 + 0.970977i \(0.576877\pi\)
\(740\) 0 0
\(741\) 11.9147 11.9147i 0.437697 0.437697i
\(742\) 0 0
\(743\) 20.7110i 0.759812i −0.925025 0.379906i \(-0.875956\pi\)
0.925025 0.379906i \(-0.124044\pi\)
\(744\) 0 0
\(745\) −32.1739 18.5756i −1.17876 0.680558i
\(746\) 0 0
\(747\) 0.365952 + 0.0980566i 0.0133895 + 0.00358770i
\(748\) 0 0
\(749\) 6.94168 3.90928i 0.253643 0.142842i
\(750\) 0 0
\(751\) 7.73865 + 13.4037i 0.282387 + 0.489109i 0.971972 0.235096i \(-0.0755403\pi\)
−0.689585 + 0.724205i \(0.742207\pi\)
\(752\) 0 0
\(753\) 6.56486 11.3707i 0.239237 0.414370i
\(754\) 0 0
\(755\) 9.10132 + 9.10132i 0.331231 + 0.331231i
\(756\) 0 0
\(757\) −18.4631 + 18.4631i −0.671051 + 0.671051i −0.957958 0.286907i \(-0.907373\pi\)
0.286907 + 0.957958i \(0.407373\pi\)
\(758\) 0 0
\(759\) 9.72088 + 5.61235i 0.352846 + 0.203715i
\(760\) 0 0
\(761\) −11.1420 + 6.43283i −0.403897 + 0.233190i −0.688164 0.725555i \(-0.741583\pi\)
0.284267 + 0.958745i \(0.408250\pi\)
\(762\) 0 0
\(763\) 9.57624 16.1838i 0.346683 0.585894i
\(764\) 0 0
\(765\) −0.227923 + 0.850618i −0.00824056 + 0.0307542i
\(766\) 0 0
\(767\) 7.20094 12.4724i 0.260011 0.450352i
\(768\) 0 0
\(769\) −16.5676 −0.597443 −0.298722 0.954340i \(-0.596560\pi\)
−0.298722 + 0.954340i \(0.596560\pi\)
\(770\) 0 0
\(771\) −34.2238 34.2238i −1.23254 1.23254i
\(772\) 0 0
\(773\) 12.6807 + 47.3250i 0.456093 + 1.70216i 0.684856 + 0.728679i \(0.259865\pi\)
−0.228763 + 0.973482i \(0.573468\pi\)
\(774\) 0 0
\(775\) 0.318960 0.184152i 0.0114574 0.00661492i
\(776\) 0 0
\(777\) 1.06686 1.04425i 0.0382733 0.0374623i
\(778\) 0 0
\(779\) 44.2635 + 11.8604i 1.58591 + 0.424942i
\(780\) 0 0
\(781\) 17.0139 4.55886i 0.608805 0.163129i
\(782\) 0 0
\(783\) 38.6776 1.38222
\(784\) 0 0
\(785\) 36.8021 1.31352
\(786\) 0 0
\(787\) 5.05999 1.35582i 0.180369 0.0483298i −0.167504 0.985871i \(-0.553571\pi\)
0.347873 + 0.937542i \(0.386904\pi\)
\(788\) 0 0
\(789\) −28.4427 7.62121i −1.01259 0.271322i
\(790\) 0 0
\(791\) 11.2790 11.0400i 0.401035 0.392537i
\(792\) 0 0
\(793\) −14.6304 + 8.44687i −0.519541 + 0.299957i
\(794\) 0 0
\(795\) 0.374277 + 1.39682i 0.0132742 + 0.0495401i
\(796\) 0 0
\(797\) −20.4204 20.4204i −0.723329 0.723329i 0.245953 0.969282i \(-0.420899\pi\)
−0.969282 + 0.245953i \(0.920899\pi\)
\(798\) 0 0
\(799\) 4.15514 0.146998
\(800\) 0 0
\(801\) −1.44860 + 2.50906i −0.0511839 + 0.0886532i
\(802\) 0 0
\(803\) 3.88193 14.4876i 0.136990 0.511255i
\(804\) 0 0
\(805\) −2.90248 + 4.90518i −0.102299 + 0.172885i
\(806\) 0 0
\(807\) −21.5389 + 12.4355i −0.758205 + 0.437750i
\(808\) 0 0
\(809\) −33.6734 19.4413i −1.18389 0.683521i −0.226981 0.973899i \(-0.572886\pi\)
−0.956912 + 0.290378i \(0.906219\pi\)
\(810\) 0 0
\(811\) −12.4718 + 12.4718i −0.437945 + 0.437945i −0.891320 0.453375i \(-0.850220\pi\)
0.453375 + 0.891320i \(0.350220\pi\)
\(812\) 0 0
\(813\) 16.3238 + 16.3238i 0.572501 + 0.572501i
\(814\) 0 0
\(815\) 11.5902 20.0749i 0.405988 0.703192i
\(816\) 0 0
\(817\) −7.83387 13.5687i −0.274072 0.474707i
\(818\) 0 0
\(819\) −0.839609 + 0.472835i −0.0293383 + 0.0165222i
\(820\) 0 0
\(821\) 18.4979 + 4.95650i 0.645581 + 0.172983i 0.566730 0.823903i \(-0.308208\pi\)
0.0788511 + 0.996886i \(0.474875\pi\)
\(822\) 0 0
\(823\) 8.96748 + 5.17738i 0.312587 + 0.180472i 0.648083 0.761569i \(-0.275571\pi\)
−0.335497 + 0.942041i \(0.608904\pi\)
\(824\) 0 0
\(825\) 9.76376i 0.339931i
\(826\) 0 0
\(827\) 9.65786 9.65786i 0.335837 0.335837i −0.518961 0.854798i \(-0.673681\pi\)
0.854798 + 0.518961i \(0.173681\pi\)
\(828\) 0 0
\(829\) −25.6983 + 6.88583i −0.892538 + 0.239155i −0.675809 0.737077i \(-0.736205\pi\)
−0.216729 + 0.976232i \(0.569539\pi\)
\(830\) 0 0
\(831\) 1.92201 + 3.32902i 0.0666739 + 0.115483i
\(832\) 0 0
\(833\) 11.5023 + 6.97343i 0.398530 + 0.241615i
\(834\) 0 0
\(835\) 11.3164 42.2334i 0.391620 1.46155i
\(836\) 0 0
\(837\) −0.551588 2.05855i −0.0190657 0.0711540i
\(838\) 0 0
\(839\) 46.4429i 1.60339i −0.597736 0.801693i \(-0.703933\pi\)
0.597736 0.801693i \(-0.296067\pi\)
\(840\) 0 0
\(841\) 22.8031i 0.786315i
\(842\) 0 0
\(843\) 0.293220 + 1.09431i 0.0100990 + 0.0376902i
\(844\) 0 0
\(845\) −5.44618 + 20.3254i −0.187354 + 0.699216i
\(846\) 0 0
\(847\) 20.5531 73.5459i 0.706211 2.52707i
\(848\) 0 0
\(849\) −0.316904 0.548894i −0.0108761 0.0188380i
\(850\) 0 0
\(851\) 0.349443 0.0936330i 0.0119788 0.00320970i
\(852\) 0 0
\(853\) 31.3013 31.3013i 1.07174 1.07174i 0.0745177 0.997220i \(-0.476258\pi\)
0.997220 0.0745177i \(-0.0237417\pi\)
\(854\) 0 0
\(855\) 2.89191i 0.0989014i
\(856\) 0 0
\(857\) 22.8393 + 13.1863i 0.780175 + 0.450434i 0.836492 0.547979i \(-0.184602\pi\)
−0.0563171 + 0.998413i \(0.517936\pi\)
\(858\) 0 0
\(859\) 2.91867 + 0.782055i 0.0995837 + 0.0266834i 0.308267 0.951300i \(-0.400251\pi\)
−0.208683 + 0.977983i \(0.566918\pi\)
\(860\) 0 0
\(861\) 27.5344 + 16.2926i 0.938371 + 0.555250i
\(862\) 0 0
\(863\) −3.50456 6.07008i −0.119297 0.206628i 0.800192 0.599743i \(-0.204731\pi\)
−0.919489 + 0.393115i \(0.871397\pi\)
\(864\) 0 0
\(865\) 12.9092 22.3594i 0.438925 0.760241i
\(866\) 0 0
\(867\) 15.6692 + 15.6692i 0.532155 + 0.532155i
\(868\) 0 0
\(869\) 45.6115 45.6115i 1.54726 1.54726i
\(870\) 0 0
\(871\) 11.3210 + 6.53619i 0.383598 + 0.221470i
\(872\) 0 0
\(873\) 0.434991 0.251142i 0.0147222 0.00849987i
\(874\) 0 0
\(875\) −31.6483 0.338890i −1.06991 0.0114566i
\(876\) 0 0
\(877\) −10.6267 + 39.6594i −0.358838 + 1.33920i 0.516748 + 0.856138i \(0.327143\pi\)
−0.875585 + 0.483063i \(0.839524\pi\)
\(878\) 0 0
\(879\) −8.82185 + 15.2799i −0.297554 + 0.515378i
\(880\) 0 0
\(881\) −13.6166 −0.458755 −0.229377 0.973338i \(-0.573669\pi\)
−0.229377 + 0.973338i \(0.573669\pi\)
\(882\) 0 0
\(883\) −35.2238 35.2238i −1.18537 1.18537i −0.978332 0.207042i \(-0.933616\pi\)
−0.207042 0.978332i \(-0.566384\pi\)
\(884\) 0 0
\(885\) −7.81030 29.1484i −0.262540 0.979814i
\(886\) 0 0
\(887\) −5.44911 + 3.14604i −0.182963 + 0.105634i −0.588684 0.808363i \(-0.700354\pi\)
0.405721 + 0.913997i \(0.367020\pi\)
\(888\) 0 0
\(889\) −12.1253 + 11.8684i −0.406670 + 0.398053i
\(890\) 0 0
\(891\) 50.4171 + 13.5092i 1.68904 + 0.452576i
\(892\) 0 0
\(893\) 13.1802 3.53163i 0.441060 0.118182i
\(894\) 0 0
\(895\) 6.39085 0.213623
\(896\) 0 0
\(897\) 2.85083 0.0951864
\(898\) 0 0
\(899\) 2.75714 0.738774i 0.0919559 0.0246395i
\(900\) 0 0
\(901\) 0.798852 + 0.214052i 0.0266136 + 0.00713110i
\(902\) 0 0
\(903\) −2.71786 10.5957i −0.0904447 0.352604i
\(904\) 0 0
\(905\) −35.5276 + 20.5118i −1.18098 + 0.681837i
\(906\) 0 0
\(907\) −11.6035 43.3049i −0.385289 1.43792i −0.837711 0.546113i \(-0.816107\pi\)
0.452423 0.891804i \(-0.350560\pi\)
\(908\) 0 0
\(909\) 1.15560 + 1.15560i 0.0383288 + 0.0383288i
\(910\) 0 0
\(911\) 42.8973 1.42125 0.710625 0.703571i \(-0.248412\pi\)
0.710625 + 0.703571i \(0.248412\pi\)
\(912\) 0 0
\(913\) −5.26585 + 9.12073i −0.174274 + 0.301852i
\(914\) 0 0
\(915\) −9.16166 + 34.1918i −0.302875 + 1.13035i
\(916\) 0 0
\(917\) 19.4273 + 34.4970i 0.641547 + 1.13919i
\(918\) 0 0
\(919\) 26.2242 15.1405i 0.865056 0.499440i −0.000646343 1.00000i \(-0.500206\pi\)
0.865702 + 0.500560i \(0.166872\pi\)
\(920\) 0 0
\(921\) 12.8074 + 7.39438i 0.422019 + 0.243653i
\(922\) 0 0
\(923\) 3.16330 3.16330i 0.104121 0.104121i
\(924\) 0 0
\(925\) 0.222515 + 0.222515i 0.00731626 + 0.00731626i
\(926\) 0 0
\(927\) −1.98607 + 3.43997i −0.0652311 + 0.112984i
\(928\) 0 0
\(929\) 6.93334 + 12.0089i 0.227475 + 0.393999i 0.957059 0.289892i \(-0.0936195\pi\)
−0.729584 + 0.683891i \(0.760286\pi\)
\(930\) 0 0
\(931\) 42.4126 + 12.3437i 1.39002 + 0.404548i
\(932\) 0 0
\(933\) 15.8925 + 4.25838i 0.520297 + 0.139413i
\(934\) 0 0
\(935\) −21.2002 12.2399i −0.693321 0.400289i
\(936\) 0 0
\(937\) 46.7544i 1.52740i 0.645572 + 0.763699i \(0.276619\pi\)
−0.645572 + 0.763699i \(0.723381\pi\)
\(938\) 0 0
\(939\) −20.2222 + 20.2222i −0.659927 + 0.659927i
\(940\) 0 0
\(941\) −8.04407 + 2.15540i −0.262229 + 0.0702641i −0.387538 0.921854i \(-0.626674\pi\)
0.125309 + 0.992118i \(0.460008\pi\)
\(942\) 0 0
\(943\) 3.87655 + 6.71439i 0.126238 + 0.218651i
\(944\) 0 0
\(945\) −7.72123 + 27.6292i −0.251172 + 0.898778i
\(946\) 0 0
\(947\) −1.89988 + 7.09044i −0.0617378 + 0.230408i −0.989900 0.141767i \(-0.954722\pi\)
0.928162 + 0.372176i \(0.121388\pi\)
\(948\) 0 0
\(949\) −0.985926 3.67953i −0.0320045 0.119442i
\(950\) 0 0
\(951\) 35.3776i 1.14720i
\(952\) 0 0
\(953\) 41.3553i 1.33963i −0.742528 0.669815i \(-0.766373\pi\)
0.742528 0.669815i \(-0.233627\pi\)
\(954\) 0 0
\(955\) 6.39305 + 23.8592i 0.206874 + 0.772065i
\(956\) 0 0
\(957\) −19.5850 + 73.0921i −0.633093 + 2.36273i
\(958\) 0 0
\(959\) −4.46633 + 1.14564i −0.144225 + 0.0369945i
\(960\) 0 0
\(961\) 15.4214 + 26.7106i 0.497463 + 0.861632i
\(962\) 0 0
\(963\) 0.660606 0.177009i 0.0212877 0.00570403i
\(964\) 0 0
\(965\) −3.10748 + 3.10748i −0.100033 + 0.100033i
\(966\) 0 0
\(967\) 40.5984i 1.30556i 0.757549 + 0.652778i \(0.226397\pi\)
−0.757549 + 0.652778i \(0.773603\pi\)
\(968\) 0 0
\(969\) −17.4866 10.0959i −0.561752 0.324328i
\(970\) 0 0
\(971\) −31.4132 8.41714i −1.00810 0.270119i −0.283263 0.959042i \(-0.591417\pi\)
−0.724834 + 0.688924i \(0.758084\pi\)
\(972\) 0 0
\(973\) 0.113955 10.6420i 0.00365323 0.341168i
\(974\) 0 0
\(975\) 1.23989 + 2.14755i 0.0397083 + 0.0687768i
\(976\) 0 0
\(977\) 8.34286 14.4503i 0.266912 0.462305i −0.701151 0.713013i \(-0.747330\pi\)
0.968063 + 0.250708i \(0.0806635\pi\)
\(978\) 0 0
\(979\) −56.9486 56.9486i −1.82009 1.82009i
\(980\) 0 0
\(981\) 1.14148 1.14148i 0.0364448 0.0364448i
\(982\) 0 0
\(983\) −10.1999 5.88892i −0.325326 0.187827i 0.328438 0.944526i \(-0.393478\pi\)
−0.653764 + 0.756698i \(0.726811\pi\)
\(984\) 0 0
\(985\) 24.6599 14.2374i 0.785728 0.453640i
\(986\) 0 0
\(987\) 9.52612 + 0.102006i 0.303220 + 0.00324688i
\(988\) 0 0
\(989\) 0.686082 2.56049i 0.0218161 0.0814189i
\(990\) 0 0
\(991\) 15.8872 27.5175i 0.504675 0.874122i −0.495311 0.868716i \(-0.664946\pi\)
0.999985 0.00540613i \(-0.00172083\pi\)
\(992\) 0 0
\(993\) −40.2967 −1.27878
\(994\) 0 0
\(995\) 15.0625 + 15.0625i 0.477513 + 0.477513i
\(996\) 0 0
\(997\) 0.309461 + 1.15492i 0.00980073 + 0.0365768i 0.970653 0.240484i \(-0.0773062\pi\)
−0.960852 + 0.277061i \(0.910640\pi\)
\(998\) 0 0
\(999\) 1.57695 0.910453i 0.0498925 0.0288055i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.ba.f.417.9 48
4.3 odd 2 896.2.ba.e.417.4 48
7.2 even 3 inner 896.2.ba.f.289.4 48
8.3 odd 2 448.2.ba.c.81.9 48
8.5 even 2 112.2.w.c.109.2 yes 48
16.3 odd 4 448.2.ba.c.305.4 48
16.5 even 4 inner 896.2.ba.f.865.4 48
16.11 odd 4 896.2.ba.e.865.9 48
16.13 even 4 112.2.w.c.53.10 yes 48
28.23 odd 6 896.2.ba.e.289.9 48
56.5 odd 6 784.2.x.o.765.10 48
56.13 odd 2 784.2.x.o.557.2 48
56.37 even 6 112.2.w.c.93.10 yes 48
56.45 odd 6 784.2.m.k.589.6 24
56.51 odd 6 448.2.ba.c.401.4 48
56.53 even 6 784.2.m.j.589.6 24
112.13 odd 4 784.2.x.o.165.10 48
112.37 even 12 inner 896.2.ba.f.737.9 48
112.45 odd 12 784.2.m.k.197.6 24
112.51 odd 12 448.2.ba.c.177.9 48
112.61 odd 12 784.2.x.o.373.2 48
112.93 even 12 112.2.w.c.37.2 48
112.107 odd 12 896.2.ba.e.737.4 48
112.109 even 12 784.2.m.j.197.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.c.37.2 48 112.93 even 12
112.2.w.c.53.10 yes 48 16.13 even 4
112.2.w.c.93.10 yes 48 56.37 even 6
112.2.w.c.109.2 yes 48 8.5 even 2
448.2.ba.c.81.9 48 8.3 odd 2
448.2.ba.c.177.9 48 112.51 odd 12
448.2.ba.c.305.4 48 16.3 odd 4
448.2.ba.c.401.4 48 56.51 odd 6
784.2.m.j.197.6 24 112.109 even 12
784.2.m.j.589.6 24 56.53 even 6
784.2.m.k.197.6 24 112.45 odd 12
784.2.m.k.589.6 24 56.45 odd 6
784.2.x.o.165.10 48 112.13 odd 4
784.2.x.o.373.2 48 112.61 odd 12
784.2.x.o.557.2 48 56.13 odd 2
784.2.x.o.765.10 48 56.5 odd 6
896.2.ba.e.289.9 48 28.23 odd 6
896.2.ba.e.417.4 48 4.3 odd 2
896.2.ba.e.737.4 48 112.107 odd 12
896.2.ba.e.865.9 48 16.11 odd 4
896.2.ba.f.289.4 48 7.2 even 3 inner
896.2.ba.f.417.9 48 1.1 even 1 trivial
896.2.ba.f.737.9 48 112.37 even 12 inner
896.2.ba.f.865.4 48 16.5 even 4 inner