Properties

Label 2-880-1.1-c1-0-6
Degree $2$
Conductor $880$
Sign $1$
Analytic cond. $7.02683$
Root an. cond. $2.65081$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3·9-s + 11-s + 2·13-s + 6·17-s + 4·19-s − 4·23-s + 25-s + 6·29-s + 8·31-s − 2·37-s + 2·41-s − 4·43-s − 3·45-s + 12·47-s − 7·49-s − 2·53-s + 55-s − 4·59-s − 10·61-s + 2·65-s + 16·67-s − 8·71-s + 14·73-s − 8·79-s + 9·81-s + 4·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 9-s + 0.301·11-s + 0.554·13-s + 1.45·17-s + 0.917·19-s − 0.834·23-s + 1/5·25-s + 1.11·29-s + 1.43·31-s − 0.328·37-s + 0.312·41-s − 0.609·43-s − 0.447·45-s + 1.75·47-s − 49-s − 0.274·53-s + 0.134·55-s − 0.520·59-s − 1.28·61-s + 0.248·65-s + 1.95·67-s − 0.949·71-s + 1.63·73-s − 0.900·79-s + 81-s + 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(880\)    =    \(2^{4} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(7.02683\)
Root analytic conductor: \(2.65081\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 880,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.721273448\)
\(L(\frac12)\) \(\approx\) \(1.721273448\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
good3 \( 1 + p T^{2} \)
7 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 16 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07588915028781859505118646541, −9.376036497146997809466572379928, −8.402071812243779349662792300606, −7.78041223670494609407513138154, −6.49908708730306794178412805091, −5.83555924118533390298503875284, −4.97617253141282559040022801022, −3.60799086718076388676488423337, −2.69303075235727048947048138558, −1.13555459814448309624758433433, 1.13555459814448309624758433433, 2.69303075235727048947048138558, 3.60799086718076388676488423337, 4.97617253141282559040022801022, 5.83555924118533390298503875284, 6.49908708730306794178412805091, 7.78041223670494609407513138154, 8.402071812243779349662792300606, 9.376036497146997809466572379928, 10.07588915028781859505118646541

Graph of the $Z$-function along the critical line