L(s) = 1 | + 5-s − 3·9-s + 11-s + 2·13-s + 6·17-s + 4·19-s − 4·23-s + 25-s + 6·29-s + 8·31-s − 2·37-s + 2·41-s − 4·43-s − 3·45-s + 12·47-s − 7·49-s − 2·53-s + 55-s − 4·59-s − 10·61-s + 2·65-s + 16·67-s − 8·71-s + 14·73-s − 8·79-s + 9·81-s + 4·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 9-s + 0.301·11-s + 0.554·13-s + 1.45·17-s + 0.917·19-s − 0.834·23-s + 1/5·25-s + 1.11·29-s + 1.43·31-s − 0.328·37-s + 0.312·41-s − 0.609·43-s − 0.447·45-s + 1.75·47-s − 49-s − 0.274·53-s + 0.134·55-s − 0.520·59-s − 1.28·61-s + 0.248·65-s + 1.95·67-s − 0.949·71-s + 1.63·73-s − 0.900·79-s + 81-s + 0.439·83-s + ⋯ |
Λ(s)=(=(880s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(880s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.721273448 |
L(21) |
≈ |
1.721273448 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 11 | 1−T |
good | 3 | 1+pT2 |
| 7 | 1+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1+4T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1−16T+pT2 |
| 71 | 1+8T+pT2 |
| 73 | 1−14T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1−10T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.07588915028781859505118646541, −9.376036497146997809466572379928, −8.402071812243779349662792300606, −7.78041223670494609407513138154, −6.49908708730306794178412805091, −5.83555924118533390298503875284, −4.97617253141282559040022801022, −3.60799086718076388676488423337, −2.69303075235727048947048138558, −1.13555459814448309624758433433,
1.13555459814448309624758433433, 2.69303075235727048947048138558, 3.60799086718076388676488423337, 4.97617253141282559040022801022, 5.83555924118533390298503875284, 6.49908708730306794178412805091, 7.78041223670494609407513138154, 8.402071812243779349662792300606, 9.376036497146997809466572379928, 10.07588915028781859505118646541