Properties

Label 880.h
Number of curves 44
Conductor 880880
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 880.h have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
551T1 - T
11111T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+3T2 1 + 3 T^{2} 1.3.a
77 1+7T2 1 + 7 T^{2} 1.7.a
1313 12T+13T2 1 - 2 T + 13 T^{2} 1.13.ac
1717 16T+17T2 1 - 6 T + 17 T^{2} 1.17.ag
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 1+4T+23T2 1 + 4 T + 23 T^{2} 1.23.e
2929 16T+29T2 1 - 6 T + 29 T^{2} 1.29.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 880.h do not have complex multiplication.

Modular form 880.2.a.h

Copy content sage:E.q_eigenform(10)
 
q+q53q9+q11+2q13+6q17+4q19+O(q20)q + q^{5} - 3 q^{9} + q^{11} + 2 q^{13} + 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 880.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
880.h1 880i3 [0,0,0,947,11214][0, 0, 0, -947, -11214] 22930509321/687522930509321/6875 2816000028160000 [2][2] 256256 0.407480.40748  
880.h2 880i4 [0,0,0,467,3794][0, 0, 0, -467, 3794] 2749884201/732052749884201/73205 299847680299847680 [4][4] 256256 0.407480.40748  
880.h3 880i2 [0,0,0,67,126][0, 0, 0, -67, -126] 8120601/30258120601/3025 1239040012390400 [2,2][2, 2] 128128 0.0609080.060908  
880.h4 880i1 [0,0,0,13,14][0, 0, 0, 13, -14] 59319/5559319/55 225280-225280 [2][2] 6464 0.28567-0.28567 Γ0(N)\Gamma_0(N)-optimal