sage:E = EllipticCurve("h1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 880.h have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1−T |
11 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+3T2 |
1.3.a
|
7 |
1+7T2 |
1.7.a
|
13 |
1−2T+13T2 |
1.13.ac
|
17 |
1−6T+17T2 |
1.17.ag
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 880.h do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.
Elliptic curves in class 880.h
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
880.h1 |
880i3 |
[0,0,0,−947,−11214] |
22930509321/6875 |
28160000 |
[2] |
256 |
0.40748
|
|
880.h2 |
880i4 |
[0,0,0,−467,3794] |
2749884201/73205 |
299847680 |
[4] |
256 |
0.40748
|
|
880.h3 |
880i2 |
[0,0,0,−67,−126] |
8120601/3025 |
12390400 |
[2,2] |
128 |
0.060908
|
|
880.h4 |
880i1 |
[0,0,0,13,−14] |
59319/55 |
−225280 |
[2] |
64 |
−0.28567
|
Γ0(N)-optimal |