Properties

Label 2-87-29.7-c1-0-5
Degree $2$
Conductor $87$
Sign $-0.990 - 0.138i$
Analytic cond. $0.694698$
Root an. cond. $0.833485$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.563 − 2.47i)2-s + (−0.900 − 0.433i)3-s + (−3.98 + 1.91i)4-s + (−0.242 − 1.06i)5-s + (−0.563 + 2.47i)6-s + (−1.55 − 0.750i)7-s + (3.82 + 4.79i)8-s + (0.623 + 0.781i)9-s + (−2.48 + 1.19i)10-s + (3.92 − 4.92i)11-s + 4.42·12-s + (−0.797 + 1.00i)13-s + (−0.975 + 4.27i)14-s + (−0.242 + 1.06i)15-s + (4.18 − 5.24i)16-s − 5.08·17-s + ⋯
L(s)  = 1  + (−0.398 − 1.74i)2-s + (−0.520 − 0.250i)3-s + (−1.99 + 0.959i)4-s + (−0.108 − 0.475i)5-s + (−0.230 + 1.00i)6-s + (−0.589 − 0.283i)7-s + (1.35 + 1.69i)8-s + (0.207 + 0.260i)9-s + (−0.786 + 0.378i)10-s + (1.18 − 1.48i)11-s + 1.27·12-s + (−0.221 + 0.277i)13-s + (−0.260 + 1.14i)14-s + (−0.0625 + 0.274i)15-s + (1.04 − 1.31i)16-s − 1.23·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 - 0.138i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.990 - 0.138i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(87\)    =    \(3 \cdot 29\)
Sign: $-0.990 - 0.138i$
Analytic conductor: \(0.694698\)
Root analytic conductor: \(0.833485\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{87} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 87,\ (\ :1/2),\ -0.990 - 0.138i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0392087 + 0.564053i\)
\(L(\frac12)\) \(\approx\) \(0.0392087 + 0.564053i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.900 + 0.433i)T \)
29 \( 1 + (1.89 - 5.04i)T \)
good2 \( 1 + (0.563 + 2.47i)T + (-1.80 + 0.867i)T^{2} \)
5 \( 1 + (0.242 + 1.06i)T + (-4.50 + 2.16i)T^{2} \)
7 \( 1 + (1.55 + 0.750i)T + (4.36 + 5.47i)T^{2} \)
11 \( 1 + (-3.92 + 4.92i)T + (-2.44 - 10.7i)T^{2} \)
13 \( 1 + (0.797 - 1.00i)T + (-2.89 - 12.6i)T^{2} \)
17 \( 1 + 5.08T + 17T^{2} \)
19 \( 1 + (-5.88 + 2.83i)T + (11.8 - 14.8i)T^{2} \)
23 \( 1 + (-1.00 + 4.41i)T + (-20.7 - 9.97i)T^{2} \)
31 \( 1 + (-1.52 - 6.68i)T + (-27.9 + 13.4i)T^{2} \)
37 \( 1 + (-3.84 - 4.82i)T + (-8.23 + 36.0i)T^{2} \)
41 \( 1 - 4.04T + 41T^{2} \)
43 \( 1 + (0.407 - 1.78i)T + (-38.7 - 18.6i)T^{2} \)
47 \( 1 + (-0.945 + 1.18i)T + (-10.4 - 45.8i)T^{2} \)
53 \( 1 + (-0.839 - 3.67i)T + (-47.7 + 22.9i)T^{2} \)
59 \( 1 + 8.72T + 59T^{2} \)
61 \( 1 + (-2.78 - 1.33i)T + (38.0 + 47.6i)T^{2} \)
67 \( 1 + (1.49 + 1.87i)T + (-14.9 + 65.3i)T^{2} \)
71 \( 1 + (-5.82 + 7.30i)T + (-15.7 - 69.2i)T^{2} \)
73 \( 1 + (-0.400 + 1.75i)T + (-65.7 - 31.6i)T^{2} \)
79 \( 1 + (1.78 + 2.24i)T + (-17.5 + 77.0i)T^{2} \)
83 \( 1 + (5.94 - 2.86i)T + (51.7 - 64.8i)T^{2} \)
89 \( 1 + (0.744 + 3.26i)T + (-80.1 + 38.6i)T^{2} \)
97 \( 1 + (2.04 - 0.983i)T + (60.4 - 75.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23732712008420936976416394457, −12.28698186215596000945584962041, −11.43112893218702336535556728576, −10.70883349119752888891978463045, −9.325531234427143624171984320365, −8.648553435709736852854558542037, −6.63001479973554901091548056054, −4.64437198777814347121229335412, −3.17500430035784360813652181235, −0.938251382334138438353262608340, 4.30223817013189553533458349916, 5.73919089011354904261719852341, 6.77466013218414382650062451083, 7.55885984262009143855116758703, 9.324624227901577572686792548341, 9.742431912517094940363077985279, 11.50482433126427757286091545137, 12.87310152589461963112684182517, 14.19906347700537839649856219169, 15.16118050022843159921866083262

Graph of the $Z$-function along the critical line