L(s) = 1 | + (−0.563 − 2.47i)2-s + (−0.900 − 0.433i)3-s + (−3.98 + 1.91i)4-s + (−0.242 − 1.06i)5-s + (−0.563 + 2.47i)6-s + (−1.55 − 0.750i)7-s + (3.82 + 4.79i)8-s + (0.623 + 0.781i)9-s + (−2.48 + 1.19i)10-s + (3.92 − 4.92i)11-s + 4.42·12-s + (−0.797 + 1.00i)13-s + (−0.975 + 4.27i)14-s + (−0.242 + 1.06i)15-s + (4.18 − 5.24i)16-s − 5.08·17-s + ⋯ |
L(s) = 1 | + (−0.398 − 1.74i)2-s + (−0.520 − 0.250i)3-s + (−1.99 + 0.959i)4-s + (−0.108 − 0.475i)5-s + (−0.230 + 1.00i)6-s + (−0.589 − 0.283i)7-s + (1.35 + 1.69i)8-s + (0.207 + 0.260i)9-s + (−0.786 + 0.378i)10-s + (1.18 − 1.48i)11-s + 1.27·12-s + (−0.221 + 0.277i)13-s + (−0.260 + 1.14i)14-s + (−0.0625 + 0.274i)15-s + (1.04 − 1.31i)16-s − 1.23·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 - 0.138i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.990 - 0.138i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0392087 + 0.564053i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0392087 + 0.564053i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.900 + 0.433i)T \) |
| 29 | \( 1 + (1.89 - 5.04i)T \) |
good | 2 | \( 1 + (0.563 + 2.47i)T + (-1.80 + 0.867i)T^{2} \) |
| 5 | \( 1 + (0.242 + 1.06i)T + (-4.50 + 2.16i)T^{2} \) |
| 7 | \( 1 + (1.55 + 0.750i)T + (4.36 + 5.47i)T^{2} \) |
| 11 | \( 1 + (-3.92 + 4.92i)T + (-2.44 - 10.7i)T^{2} \) |
| 13 | \( 1 + (0.797 - 1.00i)T + (-2.89 - 12.6i)T^{2} \) |
| 17 | \( 1 + 5.08T + 17T^{2} \) |
| 19 | \( 1 + (-5.88 + 2.83i)T + (11.8 - 14.8i)T^{2} \) |
| 23 | \( 1 + (-1.00 + 4.41i)T + (-20.7 - 9.97i)T^{2} \) |
| 31 | \( 1 + (-1.52 - 6.68i)T + (-27.9 + 13.4i)T^{2} \) |
| 37 | \( 1 + (-3.84 - 4.82i)T + (-8.23 + 36.0i)T^{2} \) |
| 41 | \( 1 - 4.04T + 41T^{2} \) |
| 43 | \( 1 + (0.407 - 1.78i)T + (-38.7 - 18.6i)T^{2} \) |
| 47 | \( 1 + (-0.945 + 1.18i)T + (-10.4 - 45.8i)T^{2} \) |
| 53 | \( 1 + (-0.839 - 3.67i)T + (-47.7 + 22.9i)T^{2} \) |
| 59 | \( 1 + 8.72T + 59T^{2} \) |
| 61 | \( 1 + (-2.78 - 1.33i)T + (38.0 + 47.6i)T^{2} \) |
| 67 | \( 1 + (1.49 + 1.87i)T + (-14.9 + 65.3i)T^{2} \) |
| 71 | \( 1 + (-5.82 + 7.30i)T + (-15.7 - 69.2i)T^{2} \) |
| 73 | \( 1 + (-0.400 + 1.75i)T + (-65.7 - 31.6i)T^{2} \) |
| 79 | \( 1 + (1.78 + 2.24i)T + (-17.5 + 77.0i)T^{2} \) |
| 83 | \( 1 + (5.94 - 2.86i)T + (51.7 - 64.8i)T^{2} \) |
| 89 | \( 1 + (0.744 + 3.26i)T + (-80.1 + 38.6i)T^{2} \) |
| 97 | \( 1 + (2.04 - 0.983i)T + (60.4 - 75.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.23732712008420936976416394457, −12.28698186215596000945584962041, −11.43112893218702336535556728576, −10.70883349119752888891978463045, −9.325531234427143624171984320365, −8.648553435709736852854558542037, −6.63001479973554901091548056054, −4.64437198777814347121229335412, −3.17500430035784360813652181235, −0.938251382334138438353262608340,
4.30223817013189553533458349916, 5.73919089011354904261719852341, 6.77466013218414382650062451083, 7.55885984262009143855116758703, 9.324624227901577572686792548341, 9.742431912517094940363077985279, 11.50482433126427757286091545137, 12.87310152589461963112684182517, 14.19906347700537839649856219169, 15.16118050022843159921866083262