L(s) = 1 | + (−0.563 − 2.47i)2-s + (−0.900 − 0.433i)3-s + (−3.98 + 1.91i)4-s + (−0.242 − 1.06i)5-s + (−0.563 + 2.47i)6-s + (−1.55 − 0.750i)7-s + (3.82 + 4.79i)8-s + (0.623 + 0.781i)9-s + (−2.48 + 1.19i)10-s + (3.92 − 4.92i)11-s + 4.42·12-s + (−0.797 + 1.00i)13-s + (−0.975 + 4.27i)14-s + (−0.242 + 1.06i)15-s + (4.18 − 5.24i)16-s − 5.08·17-s + ⋯ |
L(s) = 1 | + (−0.398 − 1.74i)2-s + (−0.520 − 0.250i)3-s + (−1.99 + 0.959i)4-s + (−0.108 − 0.475i)5-s + (−0.230 + 1.00i)6-s + (−0.589 − 0.283i)7-s + (1.35 + 1.69i)8-s + (0.207 + 0.260i)9-s + (−0.786 + 0.378i)10-s + (1.18 − 1.48i)11-s + 1.27·12-s + (−0.221 + 0.277i)13-s + (−0.260 + 1.14i)14-s + (−0.0625 + 0.274i)15-s + (1.04 − 1.31i)16-s − 1.23·17-s + ⋯ |
Λ(s)=(=(87s/2ΓC(s)L(s)(−0.990−0.138i)Λ(2−s)
Λ(s)=(=(87s/2ΓC(s+1/2)L(s)(−0.990−0.138i)Λ(1−s)
Degree: |
2 |
Conductor: |
87
= 3⋅29
|
Sign: |
−0.990−0.138i
|
Analytic conductor: |
0.694698 |
Root analytic conductor: |
0.833485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ87(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 87, ( :1/2), −0.990−0.138i)
|
Particular Values
L(1) |
≈ |
0.0392087+0.564053i |
L(21) |
≈ |
0.0392087+0.564053i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.900+0.433i)T |
| 29 | 1+(1.89−5.04i)T |
good | 2 | 1+(0.563+2.47i)T+(−1.80+0.867i)T2 |
| 5 | 1+(0.242+1.06i)T+(−4.50+2.16i)T2 |
| 7 | 1+(1.55+0.750i)T+(4.36+5.47i)T2 |
| 11 | 1+(−3.92+4.92i)T+(−2.44−10.7i)T2 |
| 13 | 1+(0.797−1.00i)T+(−2.89−12.6i)T2 |
| 17 | 1+5.08T+17T2 |
| 19 | 1+(−5.88+2.83i)T+(11.8−14.8i)T2 |
| 23 | 1+(−1.00+4.41i)T+(−20.7−9.97i)T2 |
| 31 | 1+(−1.52−6.68i)T+(−27.9+13.4i)T2 |
| 37 | 1+(−3.84−4.82i)T+(−8.23+36.0i)T2 |
| 41 | 1−4.04T+41T2 |
| 43 | 1+(0.407−1.78i)T+(−38.7−18.6i)T2 |
| 47 | 1+(−0.945+1.18i)T+(−10.4−45.8i)T2 |
| 53 | 1+(−0.839−3.67i)T+(−47.7+22.9i)T2 |
| 59 | 1+8.72T+59T2 |
| 61 | 1+(−2.78−1.33i)T+(38.0+47.6i)T2 |
| 67 | 1+(1.49+1.87i)T+(−14.9+65.3i)T2 |
| 71 | 1+(−5.82+7.30i)T+(−15.7−69.2i)T2 |
| 73 | 1+(−0.400+1.75i)T+(−65.7−31.6i)T2 |
| 79 | 1+(1.78+2.24i)T+(−17.5+77.0i)T2 |
| 83 | 1+(5.94−2.86i)T+(51.7−64.8i)T2 |
| 89 | 1+(0.744+3.26i)T+(−80.1+38.6i)T2 |
| 97 | 1+(2.04−0.983i)T+(60.4−75.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.23732712008420936976416394457, −12.28698186215596000945584962041, −11.43112893218702336535556728576, −10.70883349119752888891978463045, −9.325531234427143624171984320365, −8.648553435709736852854558542037, −6.63001479973554901091548056054, −4.64437198777814347121229335412, −3.17500430035784360813652181235, −0.938251382334138438353262608340,
4.30223817013189553533458349916, 5.73919089011354904261719852341, 6.77466013218414382650062451083, 7.55885984262009143855116758703, 9.324624227901577572686792548341, 9.742431912517094940363077985279, 11.50482433126427757286091545137, 12.87310152589461963112684182517, 14.19906347700537839649856219169, 15.16118050022843159921866083262