L(s) = 1 | + (−0.563 + 2.47i)2-s + (−0.900 + 0.433i)3-s + (−3.98 − 1.91i)4-s + (−0.242 + 1.06i)5-s + (−0.563 − 2.47i)6-s + (−1.55 + 0.750i)7-s + (3.82 − 4.79i)8-s + (0.623 − 0.781i)9-s + (−2.48 − 1.19i)10-s + (3.92 + 4.92i)11-s + 4.42·12-s + (−0.797 − 1.00i)13-s + (−0.975 − 4.27i)14-s + (−0.242 − 1.06i)15-s + (4.18 + 5.24i)16-s − 5.08·17-s + ⋯ |
L(s) = 1 | + (−0.398 + 1.74i)2-s + (−0.520 + 0.250i)3-s + (−1.99 − 0.959i)4-s + (−0.108 + 0.475i)5-s + (−0.230 − 1.00i)6-s + (−0.589 + 0.283i)7-s + (1.35 − 1.69i)8-s + (0.207 − 0.260i)9-s + (−0.786 − 0.378i)10-s + (1.18 + 1.48i)11-s + 1.27·12-s + (−0.221 − 0.277i)13-s + (−0.260 − 1.14i)14-s + (−0.0625 − 0.274i)15-s + (1.04 + 1.31i)16-s − 1.23·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 + 0.138i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.990 + 0.138i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0392087 - 0.564053i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0392087 - 0.564053i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.900 - 0.433i)T \) |
| 29 | \( 1 + (1.89 + 5.04i)T \) |
good | 2 | \( 1 + (0.563 - 2.47i)T + (-1.80 - 0.867i)T^{2} \) |
| 5 | \( 1 + (0.242 - 1.06i)T + (-4.50 - 2.16i)T^{2} \) |
| 7 | \( 1 + (1.55 - 0.750i)T + (4.36 - 5.47i)T^{2} \) |
| 11 | \( 1 + (-3.92 - 4.92i)T + (-2.44 + 10.7i)T^{2} \) |
| 13 | \( 1 + (0.797 + 1.00i)T + (-2.89 + 12.6i)T^{2} \) |
| 17 | \( 1 + 5.08T + 17T^{2} \) |
| 19 | \( 1 + (-5.88 - 2.83i)T + (11.8 + 14.8i)T^{2} \) |
| 23 | \( 1 + (-1.00 - 4.41i)T + (-20.7 + 9.97i)T^{2} \) |
| 31 | \( 1 + (-1.52 + 6.68i)T + (-27.9 - 13.4i)T^{2} \) |
| 37 | \( 1 + (-3.84 + 4.82i)T + (-8.23 - 36.0i)T^{2} \) |
| 41 | \( 1 - 4.04T + 41T^{2} \) |
| 43 | \( 1 + (0.407 + 1.78i)T + (-38.7 + 18.6i)T^{2} \) |
| 47 | \( 1 + (-0.945 - 1.18i)T + (-10.4 + 45.8i)T^{2} \) |
| 53 | \( 1 + (-0.839 + 3.67i)T + (-47.7 - 22.9i)T^{2} \) |
| 59 | \( 1 + 8.72T + 59T^{2} \) |
| 61 | \( 1 + (-2.78 + 1.33i)T + (38.0 - 47.6i)T^{2} \) |
| 67 | \( 1 + (1.49 - 1.87i)T + (-14.9 - 65.3i)T^{2} \) |
| 71 | \( 1 + (-5.82 - 7.30i)T + (-15.7 + 69.2i)T^{2} \) |
| 73 | \( 1 + (-0.400 - 1.75i)T + (-65.7 + 31.6i)T^{2} \) |
| 79 | \( 1 + (1.78 - 2.24i)T + (-17.5 - 77.0i)T^{2} \) |
| 83 | \( 1 + (5.94 + 2.86i)T + (51.7 + 64.8i)T^{2} \) |
| 89 | \( 1 + (0.744 - 3.26i)T + (-80.1 - 38.6i)T^{2} \) |
| 97 | \( 1 + (2.04 + 0.983i)T + (60.4 + 75.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.16118050022843159921866083262, −14.19906347700537839649856219169, −12.87310152589461963112684182517, −11.50482433126427757286091545137, −9.742431912517094940363077985279, −9.324624227901577572686792548341, −7.55885984262009143855116758703, −6.77466013218414382650062451083, −5.73919089011354904261719852341, −4.30223817013189553533458349916,
0.938251382334138438353262608340, 3.17500430035784360813652181235, 4.64437198777814347121229335412, 6.63001479973554901091548056054, 8.648553435709736852854558542037, 9.325531234427143624171984320365, 10.70883349119752888891978463045, 11.43112893218702336535556728576, 12.28698186215596000945584962041, 13.23732712008420936976416394457