L(s) = 1 | + (−0.0518 + 0.0650i)2-s + (0.222 − 0.974i)3-s + (0.443 + 1.94i)4-s + (1.20 − 1.50i)5-s + (0.0518 + 0.0650i)6-s + (−0.0765 + 0.335i)7-s + (−0.299 − 0.144i)8-s + (−0.900 − 0.433i)9-s + (0.0357 + 0.156i)10-s + (2.18 − 1.05i)11-s + 1.99·12-s + (−3.27 + 1.57i)13-s + (−0.0178 − 0.0223i)14-s + (−1.20 − 1.50i)15-s + (−3.56 + 1.71i)16-s − 6.15·17-s + ⋯ |
L(s) = 1 | + (−0.0366 + 0.0459i)2-s + (0.128 − 0.562i)3-s + (0.221 + 0.971i)4-s + (0.538 − 0.674i)5-s + (0.0211 + 0.0265i)6-s + (−0.0289 + 0.126i)7-s + (−0.105 − 0.0509i)8-s + (−0.300 − 0.144i)9-s + (0.0112 + 0.0494i)10-s + (0.658 − 0.317i)11-s + 0.575·12-s + (−0.907 + 0.436i)13-s + (−0.00476 − 0.00597i)14-s + (−0.310 − 0.389i)15-s + (−0.891 + 0.429i)16-s − 1.49·17-s + ⋯ |
Λ(s)=(=(87s/2ΓC(s)L(s)(0.994+0.103i)Λ(2−s)
Λ(s)=(=(87s/2ΓC(s+1/2)L(s)(0.994+0.103i)Λ(1−s)
Degree: |
2 |
Conductor: |
87
= 3⋅29
|
Sign: |
0.994+0.103i
|
Analytic conductor: |
0.694698 |
Root analytic conductor: |
0.833485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ87(52,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 87, ( :1/2), 0.994+0.103i)
|
Particular Values
L(1) |
≈ |
1.05541−0.0545208i |
L(21) |
≈ |
1.05541−0.0545208i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.222+0.974i)T |
| 29 | 1+(4.26−3.29i)T |
good | 2 | 1+(0.0518−0.0650i)T+(−0.445−1.94i)T2 |
| 5 | 1+(−1.20+1.50i)T+(−1.11−4.87i)T2 |
| 7 | 1+(0.0765−0.335i)T+(−6.30−3.03i)T2 |
| 11 | 1+(−2.18+1.05i)T+(6.85−8.60i)T2 |
| 13 | 1+(3.27−1.57i)T+(8.10−10.1i)T2 |
| 17 | 1+6.15T+17T2 |
| 19 | 1+(−0.300−1.31i)T+(−17.1+8.24i)T2 |
| 23 | 1+(2.16+2.70i)T+(−5.11+22.4i)T2 |
| 31 | 1+(−6.85+8.59i)T+(−6.89−30.2i)T2 |
| 37 | 1+(−2.78−1.33i)T+(23.0+28.9i)T2 |
| 41 | 1−5.28T+41T2 |
| 43 | 1+(0.00526+0.00659i)T+(−9.56+41.9i)T2 |
| 47 | 1+(−5.22+2.51i)T+(29.3−36.7i)T2 |
| 53 | 1+(2.58−3.23i)T+(−11.7−51.6i)T2 |
| 59 | 1−5.76T+59T2 |
| 61 | 1+(−1.38+6.08i)T+(−54.9−26.4i)T2 |
| 67 | 1+(9.92+4.77i)T+(41.7+52.3i)T2 |
| 71 | 1+(11.5−5.57i)T+(44.2−55.5i)T2 |
| 73 | 1+(−0.286−0.359i)T+(−16.2+71.1i)T2 |
| 79 | 1+(−11.2−5.41i)T+(49.2+61.7i)T2 |
| 83 | 1+(0.640+2.80i)T+(−74.7+36.0i)T2 |
| 89 | 1+(7.62−9.55i)T+(−19.8−86.7i)T2 |
| 97 | 1+(−0.606−2.65i)T+(−87.3+42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.88625020839372426783470706555, −13.04612654294961150131848483169, −12.20951197224154527463370358444, −11.28268786247941478890160201829, −9.408569874164116857878163937355, −8.605981583085119117281117588126, −7.35118704892474149938195512250, −6.18236823293577027874684331002, −4.31830425762404274827130986333, −2.32574764180977286338758692199,
2.42845099258208896765894669285, 4.56719057115337065583188079935, 6.00361210190932933877974384582, 7.09332890571311192474067950348, 9.041094055793296856686353436235, 9.975440516733443496364393678535, 10.69629314685900320849090979998, 11.80263783270728393119184326482, 13.49621310297348168381822310243, 14.39736827457890762328597777300