L(s) = 1 | + (−0.0518 − 0.0650i)2-s + (0.222 + 0.974i)3-s + (0.443 − 1.94i)4-s + (1.20 + 1.50i)5-s + (0.0518 − 0.0650i)6-s + (−0.0765 − 0.335i)7-s + (−0.299 + 0.144i)8-s + (−0.900 + 0.433i)9-s + (0.0357 − 0.156i)10-s + (2.18 + 1.05i)11-s + 1.99·12-s + (−3.27 − 1.57i)13-s + (−0.0178 + 0.0223i)14-s + (−1.20 + 1.50i)15-s + (−3.56 − 1.71i)16-s − 6.15·17-s + ⋯ |
L(s) = 1 | + (−0.0366 − 0.0459i)2-s + (0.128 + 0.562i)3-s + (0.221 − 0.971i)4-s + (0.538 + 0.674i)5-s + (0.0211 − 0.0265i)6-s + (−0.0289 − 0.126i)7-s + (−0.105 + 0.0509i)8-s + (−0.300 + 0.144i)9-s + (0.0112 − 0.0494i)10-s + (0.658 + 0.317i)11-s + 0.575·12-s + (−0.907 − 0.436i)13-s + (−0.00476 + 0.00597i)14-s + (−0.310 + 0.389i)15-s + (−0.891 − 0.429i)16-s − 1.49·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 - 0.103i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 - 0.103i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.05541 + 0.0545208i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.05541 + 0.0545208i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.222 - 0.974i)T \) |
| 29 | \( 1 + (4.26 + 3.29i)T \) |
good | 2 | \( 1 + (0.0518 + 0.0650i)T + (-0.445 + 1.94i)T^{2} \) |
| 5 | \( 1 + (-1.20 - 1.50i)T + (-1.11 + 4.87i)T^{2} \) |
| 7 | \( 1 + (0.0765 + 0.335i)T + (-6.30 + 3.03i)T^{2} \) |
| 11 | \( 1 + (-2.18 - 1.05i)T + (6.85 + 8.60i)T^{2} \) |
| 13 | \( 1 + (3.27 + 1.57i)T + (8.10 + 10.1i)T^{2} \) |
| 17 | \( 1 + 6.15T + 17T^{2} \) |
| 19 | \( 1 + (-0.300 + 1.31i)T + (-17.1 - 8.24i)T^{2} \) |
| 23 | \( 1 + (2.16 - 2.70i)T + (-5.11 - 22.4i)T^{2} \) |
| 31 | \( 1 + (-6.85 - 8.59i)T + (-6.89 + 30.2i)T^{2} \) |
| 37 | \( 1 + (-2.78 + 1.33i)T + (23.0 - 28.9i)T^{2} \) |
| 41 | \( 1 - 5.28T + 41T^{2} \) |
| 43 | \( 1 + (0.00526 - 0.00659i)T + (-9.56 - 41.9i)T^{2} \) |
| 47 | \( 1 + (-5.22 - 2.51i)T + (29.3 + 36.7i)T^{2} \) |
| 53 | \( 1 + (2.58 + 3.23i)T + (-11.7 + 51.6i)T^{2} \) |
| 59 | \( 1 - 5.76T + 59T^{2} \) |
| 61 | \( 1 + (-1.38 - 6.08i)T + (-54.9 + 26.4i)T^{2} \) |
| 67 | \( 1 + (9.92 - 4.77i)T + (41.7 - 52.3i)T^{2} \) |
| 71 | \( 1 + (11.5 + 5.57i)T + (44.2 + 55.5i)T^{2} \) |
| 73 | \( 1 + (-0.286 + 0.359i)T + (-16.2 - 71.1i)T^{2} \) |
| 79 | \( 1 + (-11.2 + 5.41i)T + (49.2 - 61.7i)T^{2} \) |
| 83 | \( 1 + (0.640 - 2.80i)T + (-74.7 - 36.0i)T^{2} \) |
| 89 | \( 1 + (7.62 + 9.55i)T + (-19.8 + 86.7i)T^{2} \) |
| 97 | \( 1 + (-0.606 + 2.65i)T + (-87.3 - 42.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.39736827457890762328597777300, −13.49621310297348168381822310243, −11.80263783270728393119184326482, −10.69629314685900320849090979998, −9.975440516733443496364393678535, −9.041094055793296856686353436235, −7.09332890571311192474067950348, −6.00361210190932933877974384582, −4.56719057115337065583188079935, −2.42845099258208896765894669285,
2.32574764180977286338758692199, 4.31830425762404274827130986333, 6.18236823293577027874684331002, 7.35118704892474149938195512250, 8.605981583085119117281117588126, 9.408569874164116857878163937355, 11.28268786247941478890160201829, 12.20951197224154527463370358444, 13.04612654294961150131848483169, 13.88625020839372426783470706555