L(s) = 1 | + (0.626 − 0.301i)2-s + (0.623 + 0.781i)3-s + (−0.945 + 1.18i)4-s + (1.81 − 0.875i)5-s + (0.626 + 0.301i)6-s + (−1.49 − 1.87i)7-s + (−0.543 + 2.38i)8-s + (−0.222 + 0.974i)9-s + (0.874 − 1.09i)10-s + (0.213 + 0.933i)11-s − 1.51·12-s + (−1.45 − 6.36i)13-s + (−1.49 − 0.722i)14-s + (1.81 + 0.875i)15-s + (−0.297 − 1.30i)16-s − 3.81·17-s + ⋯ |
L(s) = 1 | + (0.442 − 0.213i)2-s + (0.359 + 0.451i)3-s + (−0.472 + 0.593i)4-s + (0.813 − 0.391i)5-s + (0.255 + 0.123i)6-s + (−0.564 − 0.707i)7-s + (−0.192 + 0.842i)8-s + (−0.0741 + 0.324i)9-s + (0.276 − 0.346i)10-s + (0.0642 + 0.281i)11-s − 0.437·12-s + (−0.403 − 1.76i)13-s + (−0.400 − 0.192i)14-s + (0.469 + 0.226i)15-s + (−0.0742 − 0.325i)16-s − 0.925·17-s + ⋯ |
Λ(s)=(=(87s/2ΓC(s)L(s)(0.980−0.198i)Λ(2−s)
Λ(s)=(=(87s/2ΓC(s+1/2)L(s)(0.980−0.198i)Λ(1−s)
Degree: |
2 |
Conductor: |
87
= 3⋅29
|
Sign: |
0.980−0.198i
|
Analytic conductor: |
0.694698 |
Root analytic conductor: |
0.833485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ87(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 87, ( :1/2), 0.980−0.198i)
|
Particular Values
L(1) |
≈ |
1.21946+0.122332i |
L(21) |
≈ |
1.21946+0.122332i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.623−0.781i)T |
| 29 | 1+(−5.32−0.822i)T |
good | 2 | 1+(−0.626+0.301i)T+(1.24−1.56i)T2 |
| 5 | 1+(−1.81+0.875i)T+(3.11−3.90i)T2 |
| 7 | 1+(1.49+1.87i)T+(−1.55+6.82i)T2 |
| 11 | 1+(−0.213−0.933i)T+(−9.91+4.77i)T2 |
| 13 | 1+(1.45+6.36i)T+(−11.7+5.64i)T2 |
| 17 | 1+3.81T+17T2 |
| 19 | 1+(2.69−3.37i)T+(−4.22−18.5i)T2 |
| 23 | 1+(−4.85−2.33i)T+(14.3+17.9i)T2 |
| 31 | 1+(2.46−1.18i)T+(19.3−24.2i)T2 |
| 37 | 1+(−0.414+1.81i)T+(−33.3−16.0i)T2 |
| 41 | 1−11.8T+41T2 |
| 43 | 1+(−3.33−1.60i)T+(26.8+33.6i)T2 |
| 47 | 1+(−0.719−3.15i)T+(−42.3+20.3i)T2 |
| 53 | 1+(2.04−0.983i)T+(33.0−41.4i)T2 |
| 59 | 1+9.30T+59T2 |
| 61 | 1+(−1.95−2.45i)T+(−13.5+59.4i)T2 |
| 67 | 1+(2.69−11.7i)T+(−60.3−29.0i)T2 |
| 71 | 1+(−1.02−4.48i)T+(−63.9+30.8i)T2 |
| 73 | 1+(8.19+3.94i)T+(45.5+57.0i)T2 |
| 79 | 1+(0.954−4.18i)T+(−71.1−34.2i)T2 |
| 83 | 1+(−10.0+12.6i)T+(−18.4−80.9i)T2 |
| 89 | 1+(13.9−6.70i)T+(55.4−69.5i)T2 |
| 97 | 1+(−9.82+12.3i)T+(−21.5−94.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.00686756212010650108514069515, −13.04551241911722362111960096692, −12.66241706770323601678831358789, −10.84394895185136316765051470202, −9.821714634851823745537148712805, −8.802768864765464308260464492586, −7.53980768272226008651777164328, −5.63910136569424856062767399787, −4.35143892212928684892717348392, −2.93429556732389874933229058579,
2.38999204025373528884186425916, 4.52827333859278540616598365948, 6.17476363171916735581843429900, 6.74480056948357067830448435816, 8.990600444375428211614297167666, 9.403874665916473964606072038548, 10.89192969477129782820064787031, 12.38334003953773202386472265489, 13.39249347464210750220078345830, 14.06819514434524724865526330611