L(s) = 1 | + (0.626 + 0.301i)2-s + (0.623 − 0.781i)3-s + (−0.945 − 1.18i)4-s + (1.81 + 0.875i)5-s + (0.626 − 0.301i)6-s + (−1.49 + 1.87i)7-s + (−0.543 − 2.38i)8-s + (−0.222 − 0.974i)9-s + (0.874 + 1.09i)10-s + (0.213 − 0.933i)11-s − 1.51·12-s + (−1.45 + 6.36i)13-s + (−1.49 + 0.722i)14-s + (1.81 − 0.875i)15-s + (−0.297 + 1.30i)16-s − 3.81·17-s + ⋯ |
L(s) = 1 | + (0.442 + 0.213i)2-s + (0.359 − 0.451i)3-s + (−0.472 − 0.593i)4-s + (0.813 + 0.391i)5-s + (0.255 − 0.123i)6-s + (−0.564 + 0.707i)7-s + (−0.192 − 0.842i)8-s + (−0.0741 − 0.324i)9-s + (0.276 + 0.346i)10-s + (0.0642 − 0.281i)11-s − 0.437·12-s + (−0.403 + 1.76i)13-s + (−0.400 + 0.192i)14-s + (0.469 − 0.226i)15-s + (−0.0742 + 0.325i)16-s − 0.925·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 + 0.198i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.980 + 0.198i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.21946 - 0.122332i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.21946 - 0.122332i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.623 + 0.781i)T \) |
| 29 | \( 1 + (-5.32 + 0.822i)T \) |
good | 2 | \( 1 + (-0.626 - 0.301i)T + (1.24 + 1.56i)T^{2} \) |
| 5 | \( 1 + (-1.81 - 0.875i)T + (3.11 + 3.90i)T^{2} \) |
| 7 | \( 1 + (1.49 - 1.87i)T + (-1.55 - 6.82i)T^{2} \) |
| 11 | \( 1 + (-0.213 + 0.933i)T + (-9.91 - 4.77i)T^{2} \) |
| 13 | \( 1 + (1.45 - 6.36i)T + (-11.7 - 5.64i)T^{2} \) |
| 17 | \( 1 + 3.81T + 17T^{2} \) |
| 19 | \( 1 + (2.69 + 3.37i)T + (-4.22 + 18.5i)T^{2} \) |
| 23 | \( 1 + (-4.85 + 2.33i)T + (14.3 - 17.9i)T^{2} \) |
| 31 | \( 1 + (2.46 + 1.18i)T + (19.3 + 24.2i)T^{2} \) |
| 37 | \( 1 + (-0.414 - 1.81i)T + (-33.3 + 16.0i)T^{2} \) |
| 41 | \( 1 - 11.8T + 41T^{2} \) |
| 43 | \( 1 + (-3.33 + 1.60i)T + (26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (-0.719 + 3.15i)T + (-42.3 - 20.3i)T^{2} \) |
| 53 | \( 1 + (2.04 + 0.983i)T + (33.0 + 41.4i)T^{2} \) |
| 59 | \( 1 + 9.30T + 59T^{2} \) |
| 61 | \( 1 + (-1.95 + 2.45i)T + (-13.5 - 59.4i)T^{2} \) |
| 67 | \( 1 + (2.69 + 11.7i)T + (-60.3 + 29.0i)T^{2} \) |
| 71 | \( 1 + (-1.02 + 4.48i)T + (-63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (8.19 - 3.94i)T + (45.5 - 57.0i)T^{2} \) |
| 79 | \( 1 + (0.954 + 4.18i)T + (-71.1 + 34.2i)T^{2} \) |
| 83 | \( 1 + (-10.0 - 12.6i)T + (-18.4 + 80.9i)T^{2} \) |
| 89 | \( 1 + (13.9 + 6.70i)T + (55.4 + 69.5i)T^{2} \) |
| 97 | \( 1 + (-9.82 - 12.3i)T + (-21.5 + 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.06819514434524724865526330611, −13.39249347464210750220078345830, −12.38334003953773202386472265489, −10.89192969477129782820064787031, −9.403874665916473964606072038548, −8.990600444375428211614297167666, −6.74480056948357067830448435816, −6.17476363171916735581843429900, −4.52827333859278540616598365948, −2.38999204025373528884186425916,
2.93429556732389874933229058579, 4.35143892212928684892717348392, 5.63910136569424856062767399787, 7.53980768272226008651777164328, 8.802768864765464308260464492586, 9.821714634851823745537148712805, 10.84394895185136316765051470202, 12.66241706770323601678831358789, 13.04551241911722362111960096692, 14.00686756212010650108514069515