| L(s)  = 1 | + (−1.38 − 1.04i)3-s     + (−1.14 − 3.15i)5-s     + (3.41 − 0.602i)7-s     + (0.828 + 2.88i)9-s     + (5.46 + 1.98i)11-s     + (2.22 + 1.86i)13-s     + (−1.69 + 5.55i)15-s     + (1.37 + 0.795i)17-s     + (4.19 − 2.42i)19-s     + (−5.35 − 2.72i)21-s     + (−0.571 + 3.24i)23-s     + (−4.78 + 4.01i)25-s     + (1.85 − 4.85i)27-s     + (−6.50 − 7.74i)29-s     + (8.83 + 1.55i)31-s    + ⋯ | 
| L(s)  = 1 | + (−0.798 − 0.601i)3-s     + (−0.513 − 1.40i)5-s     + (1.29 − 0.227i)7-s     + (0.276 + 0.961i)9-s     + (1.64 + 0.599i)11-s     + (0.618 + 0.518i)13-s     + (−0.438 + 1.43i)15-s     + (0.334 + 0.192i)17-s     + (0.963 − 0.556i)19-s     + (−1.16 − 0.595i)21-s     + (−0.119 + 0.675i)23-s     + (−0.957 + 0.803i)25-s     + (0.357 − 0.933i)27-s     + (−1.20 − 1.43i)29-s     + (1.58 + 0.279i)31-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.298 + 0.954i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.298 + 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(1.17978 - 0.867081i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.17978 - 0.867081i\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 \) | 
|  | 3 | \( 1 + (1.38 + 1.04i)T \) | 
| good | 5 | \( 1 + (1.14 + 3.15i)T + (-3.83 + 3.21i)T^{2} \) | 
|  | 7 | \( 1 + (-3.41 + 0.602i)T + (6.57 - 2.39i)T^{2} \) | 
|  | 11 | \( 1 + (-5.46 - 1.98i)T + (8.42 + 7.07i)T^{2} \) | 
|  | 13 | \( 1 + (-2.22 - 1.86i)T + (2.25 + 12.8i)T^{2} \) | 
|  | 17 | \( 1 + (-1.37 - 0.795i)T + (8.5 + 14.7i)T^{2} \) | 
|  | 19 | \( 1 + (-4.19 + 2.42i)T + (9.5 - 16.4i)T^{2} \) | 
|  | 23 | \( 1 + (0.571 - 3.24i)T + (-21.6 - 7.86i)T^{2} \) | 
|  | 29 | \( 1 + (6.50 + 7.74i)T + (-5.03 + 28.5i)T^{2} \) | 
|  | 31 | \( 1 + (-8.83 - 1.55i)T + (29.1 + 10.6i)T^{2} \) | 
|  | 37 | \( 1 + (-1.74 + 3.01i)T + (-18.5 - 32.0i)T^{2} \) | 
|  | 41 | \( 1 + (5.53 - 6.59i)T + (-7.11 - 40.3i)T^{2} \) | 
|  | 43 | \( 1 + (1.13 - 3.12i)T + (-32.9 - 27.6i)T^{2} \) | 
|  | 47 | \( 1 + (0.865 + 4.90i)T + (-44.1 + 16.0i)T^{2} \) | 
|  | 53 | \( 1 + 4.99iT - 53T^{2} \) | 
|  | 59 | \( 1 + (2.57 - 0.938i)T + (45.1 - 37.9i)T^{2} \) | 
|  | 61 | \( 1 + (-1.47 - 8.34i)T + (-57.3 + 20.8i)T^{2} \) | 
|  | 67 | \( 1 + (6.88 - 8.20i)T + (-11.6 - 65.9i)T^{2} \) | 
|  | 71 | \( 1 + (-1.30 + 2.25i)T + (-35.5 - 61.4i)T^{2} \) | 
|  | 73 | \( 1 + (-0.241 - 0.418i)T + (-36.5 + 63.2i)T^{2} \) | 
|  | 79 | \( 1 + (0.268 + 0.320i)T + (-13.7 + 77.7i)T^{2} \) | 
|  | 83 | \( 1 + (1.52 - 1.27i)T + (14.4 - 81.7i)T^{2} \) | 
|  | 89 | \( 1 + (-12.3 + 7.10i)T + (44.5 - 77.0i)T^{2} \) | 
|  | 97 | \( 1 + (8.14 + 2.96i)T + (74.3 + 62.3i)T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.919794127484789905904872911552, −9.043669813158482278487753750893, −8.176653144994335799570410326907, −7.55496760878816188760833260977, −6.54434978770991658269471265799, −5.48164465272144289656435168521, −4.61798035399722983979855825612, −4.06917892227223255943099354789, −1.62833163302501958061925140788, −1.08341349463746384417665685906, 
1.28778399630060450158803827770, 3.23337851796208425706134759749, 3.88800826571018532646524857460, 5.05253003338883258852176027718, 6.04871521610005090695798833721, 6.74228700901482152826306837405, 7.72217243352850118332675727688, 8.663129368206653417562001361416, 9.648666713429660930621301342177, 10.72387947464888066772838301818
