| L(s)  = 1  |     + (−1.71 + 0.272i)3-s     + (0.354 − 0.975i)5-s     + (−4.63 − 0.817i)7-s     + (2.85 − 0.930i)9-s     + (2.32 − 0.846i)11-s     + (−2.86 + 2.40i)13-s     + (−0.341 + 1.76i)15-s     + (2.82 − 1.62i)17-s     + (−3.42 − 1.97i)19-s     + (8.15 + 0.137i)21-s     + (1.06 + 6.04i)23-s     + (3.00 + 2.52i)25-s     + (−4.62 + 2.36i)27-s     + (−5.10 + 6.07i)29-s     + (10.2 − 1.81i)31-s    + ⋯ | 
 
| L(s)  = 1  |     + (−0.987 + 0.157i)3-s     + (0.158 − 0.436i)5-s     + (−1.75 − 0.309i)7-s     + (0.950 − 0.310i)9-s     + (0.700 − 0.255i)11-s     + (−0.794 + 0.666i)13-s     + (−0.0882 + 0.455i)15-s     + (0.684 − 0.394i)17-s     + (−0.785 − 0.453i)19-s     + (1.77 + 0.0299i)21-s     + (0.222 + 1.25i)23-s     + (0.600 + 0.504i)25-s     + (−0.890 + 0.455i)27-s     + (−0.947 + 1.12i)29-s     + (1.84 − 0.325i)31-s    + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.194 - 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.194 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(\approx\) | 
             \(0.475277 + 0.390237i\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.475277 + 0.390237i\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 \)  | 
 | 3 |  \( 1 + (1.71 - 0.272i)T \)  | 
| good | 5 |  \( 1 + (-0.354 + 0.975i)T + (-3.83 - 3.21i)T^{2} \)  | 
 | 7 |  \( 1 + (4.63 + 0.817i)T + (6.57 + 2.39i)T^{2} \)  | 
 | 11 |  \( 1 + (-2.32 + 0.846i)T + (8.42 - 7.07i)T^{2} \)  | 
 | 13 |  \( 1 + (2.86 - 2.40i)T + (2.25 - 12.8i)T^{2} \)  | 
 | 17 |  \( 1 + (-2.82 + 1.62i)T + (8.5 - 14.7i)T^{2} \)  | 
 | 19 |  \( 1 + (3.42 + 1.97i)T + (9.5 + 16.4i)T^{2} \)  | 
 | 23 |  \( 1 + (-1.06 - 6.04i)T + (-21.6 + 7.86i)T^{2} \)  | 
 | 29 |  \( 1 + (5.10 - 6.07i)T + (-5.03 - 28.5i)T^{2} \)  | 
 | 31 |  \( 1 + (-10.2 + 1.81i)T + (29.1 - 10.6i)T^{2} \)  | 
 | 37 |  \( 1 + (-0.0304 - 0.0527i)T + (-18.5 + 32.0i)T^{2} \)  | 
 | 41 |  \( 1 + (4.26 + 5.08i)T + (-7.11 + 40.3i)T^{2} \)  | 
 | 43 |  \( 1 + (-3.68 - 10.1i)T + (-32.9 + 27.6i)T^{2} \)  | 
 | 47 |  \( 1 + (1.20 - 6.80i)T + (-44.1 - 16.0i)T^{2} \)  | 
 | 53 |  \( 1 - 6.06iT - 53T^{2} \)  | 
 | 59 |  \( 1 + (8.99 + 3.27i)T + (45.1 + 37.9i)T^{2} \)  | 
 | 61 |  \( 1 + (1.05 - 5.98i)T + (-57.3 - 20.8i)T^{2} \)  | 
 | 67 |  \( 1 + (-0.695 - 0.828i)T + (-11.6 + 65.9i)T^{2} \)  | 
 | 71 |  \( 1 + (-3.24 - 5.61i)T + (-35.5 + 61.4i)T^{2} \)  | 
 | 73 |  \( 1 + (-1.27 + 2.20i)T + (-36.5 - 63.2i)T^{2} \)  | 
 | 79 |  \( 1 + (2.30 - 2.74i)T + (-13.7 - 77.7i)T^{2} \)  | 
 | 83 |  \( 1 + (-5.87 - 4.92i)T + (14.4 + 81.7i)T^{2} \)  | 
 | 89 |  \( 1 + (-5.37 - 3.10i)T + (44.5 + 77.0i)T^{2} \)  | 
 | 97 |  \( 1 + (1.14 - 0.417i)T + (74.3 - 62.3i)T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−10.25718827765314232015453580783, −9.399315530718666320943478217860, −9.231509112167625654811187105903, −7.47627052705235248526128655768, −6.72919874426558713494550034563, −6.12068598031836826201465398591, −5.10195185892030563578272299381, −4.11465106445978035019302731082, −3.06298903707667887373776604048, −1.12926524143249601566806490259, 
0.39280624851651728670848782536, 2.35607153162450387016119277972, 3.52683361753198089893685290657, 4.68953514469944497990420641434, 5.93390497723579931273804197688, 6.41795207924263918547478723816, 7.03542788002927671582217540153, 8.239352119285468435533119004371, 9.457206651816438628091598627291, 10.22540207843168012340207130585