sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(864, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,0,13]))
pari:[g,chi] = znchar(Mod(767,864))
\(\chi_{864}(95,\cdot)\)
\(\chi_{864}(191,\cdot)\)
\(\chi_{864}(383,\cdot)\)
\(\chi_{864}(479,\cdot)\)
\(\chi_{864}(671,\cdot)\)
\(\chi_{864}(767,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((703,325,353)\) → \((-1,1,e\left(\frac{13}{18}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
| \( \chi_{ 864 }(767, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)