Properties

Label 2-864-108.11-c1-0-4
Degree $2$
Conductor $864$
Sign $0.206 - 0.978i$
Analytic cond. $6.89907$
Root an. cond. $2.62660$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.265 − 1.71i)3-s + (−0.526 + 1.44i)5-s + (−1.90 − 0.335i)7-s + (−2.85 + 0.907i)9-s + (2.51 − 0.916i)11-s + (−2.60 + 2.18i)13-s + (2.61 + 0.517i)15-s + (−1.51 + 0.874i)17-s + (1.89 + 1.09i)19-s + (−0.0697 + 3.34i)21-s + (0.662 + 3.75i)23-s + (2.01 + 1.68i)25-s + (2.31 + 4.65i)27-s + (−3.29 + 3.92i)29-s + (−6.59 + 1.16i)31-s + ⋯
L(s)  = 1  + (−0.153 − 0.988i)3-s + (−0.235 + 0.647i)5-s + (−0.718 − 0.126i)7-s + (−0.953 + 0.302i)9-s + (0.759 − 0.276i)11-s + (−0.721 + 0.605i)13-s + (0.675 + 0.133i)15-s + (−0.367 + 0.212i)17-s + (0.434 + 0.250i)19-s + (−0.0152 + 0.729i)21-s + (0.138 + 0.783i)23-s + (0.402 + 0.337i)25-s + (0.444 + 0.895i)27-s + (−0.611 + 0.728i)29-s + (−1.18 + 0.208i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.206 - 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.206 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(864\)    =    \(2^{5} \cdot 3^{3}\)
Sign: $0.206 - 0.978i$
Analytic conductor: \(6.89907\)
Root analytic conductor: \(2.62660\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{864} (767, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 864,\ (\ :1/2),\ 0.206 - 0.978i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.582037 + 0.471984i\)
\(L(\frac12)\) \(\approx\) \(0.582037 + 0.471984i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.265 + 1.71i)T \)
good5 \( 1 + (0.526 - 1.44i)T + (-3.83 - 3.21i)T^{2} \)
7 \( 1 + (1.90 + 0.335i)T + (6.57 + 2.39i)T^{2} \)
11 \( 1 + (-2.51 + 0.916i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (2.60 - 2.18i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (1.51 - 0.874i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-1.89 - 1.09i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.662 - 3.75i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (3.29 - 3.92i)T + (-5.03 - 28.5i)T^{2} \)
31 \( 1 + (6.59 - 1.16i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (-5.25 - 9.09i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (3.08 + 3.67i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (-2.33 - 6.40i)T + (-32.9 + 27.6i)T^{2} \)
47 \( 1 + (-1.45 + 8.27i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 2.87iT - 53T^{2} \)
59 \( 1 + (-6.12 - 2.22i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (0.808 - 4.58i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-3.65 - 4.35i)T + (-11.6 + 65.9i)T^{2} \)
71 \( 1 + (-0.0248 - 0.0430i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (4.04 - 7.00i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-1.10 + 1.31i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (10.5 + 8.88i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (10.1 + 5.84i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (-11.2 + 4.10i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.41482508614615999330464784445, −9.421352756811393270351255995814, −8.672304743465289449221763020841, −7.44672237047487382842341447636, −6.99494758924883801643061128744, −6.27837980745677402564190624179, −5.25852170322261869246096783333, −3.75878194809131591973304699592, −2.85330259210334897249403278036, −1.49172885488731663897551903893, 0.37277974986606029343791727459, 2.55828239612232031626585857290, 3.73254803176359347800677488019, 4.56235889202154626138057423473, 5.43118223230583678194047387113, 6.37270436394025672864980453587, 7.46067049563153926434622688111, 8.561848743310911443153607030575, 9.361632844297341917028100290510, 9.725293318283672693148130568907

Graph of the $Z$-function along the critical line