Properties

Label 2-864-108.11-c1-0-17
Degree $2$
Conductor $864$
Sign $0.995 + 0.0943i$
Analytic cond. $6.89907$
Root an. cond. $2.62660$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.30 − 1.13i)3-s + (−0.759 + 2.08i)5-s + (1.09 + 0.192i)7-s + (0.420 − 2.97i)9-s + (1.84 − 0.670i)11-s + (−2.48 + 2.08i)13-s + (1.37 + 3.59i)15-s + (3.10 − 1.79i)17-s + (6.22 + 3.59i)19-s + (1.65 − 0.990i)21-s + (−0.119 − 0.676i)23-s + (0.0543 + 0.0455i)25-s + (−2.82 − 4.36i)27-s + (5.21 − 6.21i)29-s + (2.39 − 0.422i)31-s + ⋯
L(s)  = 1  + (0.755 − 0.655i)3-s + (−0.339 + 0.933i)5-s + (0.413 + 0.0729i)7-s + (0.140 − 0.990i)9-s + (0.555 − 0.202i)11-s + (−0.688 + 0.577i)13-s + (0.355 + 0.927i)15-s + (0.752 − 0.434i)17-s + (1.42 + 0.824i)19-s + (0.360 − 0.216i)21-s + (−0.0248 − 0.141i)23-s + (0.0108 + 0.00911i)25-s + (−0.543 − 0.839i)27-s + (0.968 − 1.15i)29-s + (0.430 − 0.0758i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0943i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 + 0.0943i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(864\)    =    \(2^{5} \cdot 3^{3}\)
Sign: $0.995 + 0.0943i$
Analytic conductor: \(6.89907\)
Root analytic conductor: \(2.62660\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{864} (767, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 864,\ (\ :1/2),\ 0.995 + 0.0943i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.09556 - 0.0991223i\)
\(L(\frac12)\) \(\approx\) \(2.09556 - 0.0991223i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.30 + 1.13i)T \)
good5 \( 1 + (0.759 - 2.08i)T + (-3.83 - 3.21i)T^{2} \)
7 \( 1 + (-1.09 - 0.192i)T + (6.57 + 2.39i)T^{2} \)
11 \( 1 + (-1.84 + 0.670i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (2.48 - 2.08i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (-3.10 + 1.79i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-6.22 - 3.59i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (0.119 + 0.676i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (-5.21 + 6.21i)T + (-5.03 - 28.5i)T^{2} \)
31 \( 1 + (-2.39 + 0.422i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (-3.40 - 5.89i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (4.84 + 5.77i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (-3.11 - 8.55i)T + (-32.9 + 27.6i)T^{2} \)
47 \( 1 + (1.60 - 9.08i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 + 0.398iT - 53T^{2} \)
59 \( 1 + (6.64 + 2.41i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-0.285 + 1.62i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-1.00 - 1.19i)T + (-11.6 + 65.9i)T^{2} \)
71 \( 1 + (1.82 + 3.16i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-5.80 + 10.0i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-3.03 + 3.61i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-6.03 - 5.06i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (7.16 + 4.13i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (11.6 - 4.23i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.865847773178312857703944430583, −9.456345108469105724486018707021, −8.155853505144316210854158681413, −7.69864090843974336483480558409, −6.86092576617704583876177334827, −6.08853218808944455468783610813, −4.66686822394314541084944518959, −3.43769266241773712709221027930, −2.71754648911704409253645879993, −1.32193113533595849674439180741, 1.22064544882451728017057828849, 2.80030636072484971491046457580, 3.83951286756590781390332405191, 4.87091283595766381919552603956, 5.32491238446621920917300361369, 7.01042764909497830840160659653, 7.87357279122519789989017051949, 8.519279316284526509855772582500, 9.312699219338746566397745285801, 9.984014694250392205993292505996

Graph of the $Z$-function along the critical line