L(s) = 1 | + (1.31 + 0.759i)2-s + (−0.653 + 0.175i)3-s + (0.152 + 0.263i)4-s + (2.15 + 0.600i)5-s + (−0.991 − 0.265i)6-s + (1.29 + 2.24i)7-s − 2.57i·8-s + (−2.20 + 1.27i)9-s + (2.37 + 2.42i)10-s + (4.82 − 1.29i)11-s + (−0.145 − 0.145i)12-s + 3.93i·14-s + (−1.51 − 0.0150i)15-s + (2.25 − 3.91i)16-s + (−0.0211 + 0.0790i)17-s − 3.85·18-s + ⋯ |
L(s) = 1 | + (0.929 + 0.536i)2-s + (−0.377 + 0.101i)3-s + (0.0761 + 0.131i)4-s + (0.963 + 0.268i)5-s + (−0.404 − 0.108i)6-s + (0.490 + 0.849i)7-s − 0.910i·8-s + (−0.733 + 0.423i)9-s + (0.751 + 0.766i)10-s + (1.45 − 0.390i)11-s + (−0.0420 − 0.0420i)12-s + 1.05i·14-s + (−0.390 − 0.00389i)15-s + (0.564 − 0.977i)16-s + (−0.00513 + 0.0191i)17-s − 0.909·18-s + ⋯ |
Λ(s)=(=(845s/2ΓC(s)L(s)(0.550−0.834i)Λ(2−s)
Λ(s)=(=(845s/2ΓC(s+1/2)L(s)(0.550−0.834i)Λ(1−s)
Degree: |
2 |
Conductor: |
845
= 5⋅132
|
Sign: |
0.550−0.834i
|
Analytic conductor: |
6.74735 |
Root analytic conductor: |
2.59756 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ845(188,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 845, ( :1/2), 0.550−0.834i)
|
Particular Values
L(1) |
≈ |
2.35571+1.26845i |
L(21) |
≈ |
2.35571+1.26845i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.15−0.600i)T |
| 13 | 1 |
good | 2 | 1+(−1.31−0.759i)T+(1+1.73i)T2 |
| 3 | 1+(0.653−0.175i)T+(2.59−1.5i)T2 |
| 7 | 1+(−1.29−2.24i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−4.82+1.29i)T+(9.52−5.5i)T2 |
| 17 | 1+(0.0211−0.0790i)T+(−14.7−8.5i)T2 |
| 19 | 1+(0.726−2.71i)T+(−16.4−9.5i)T2 |
| 23 | 1+(−1.05−3.91i)T+(−19.9+11.5i)T2 |
| 29 | 1+(4.31+2.49i)T+(14.5+25.1i)T2 |
| 31 | 1+(−2.32+2.32i)T−31iT2 |
| 37 | 1+(−0.285+0.494i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−2.69−10.0i)T+(−35.5+20.5i)T2 |
| 43 | 1+(0.132+0.0354i)T+(37.2+21.5i)T2 |
| 47 | 1−2.30T+47T2 |
| 53 | 1+(−6.70−6.70i)T+53iT2 |
| 59 | 1+(2.59+0.694i)T+(51.0+29.5i)T2 |
| 61 | 1+(2.74+4.74i)T+(−30.5+52.8i)T2 |
| 67 | 1+(13.6+7.89i)T+(33.5+58.0i)T2 |
| 71 | 1+(7.42+1.98i)T+(61.4+35.5i)T2 |
| 73 | 1−6.61iT−73T2 |
| 79 | 1+5.71iT−79T2 |
| 83 | 1+3.70T+83T2 |
| 89 | 1+(4.63+17.2i)T+(−77.0+44.5i)T2 |
| 97 | 1+(−4.65+2.68i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.32388621521171108987550045741, −9.407000582145317195279407396981, −8.796502976910130941452832392531, −7.53491704604868062128816358625, −6.24314469280300030296274890466, −5.99667370497567152175019367901, −5.27221974282099532686599752958, −4.27195882641174546176685433048, −3.00604379210378082981054656107, −1.56914670491405406544045682754,
1.23736946958450352686670350882, 2.51438004034935702098593987162, 3.79714937141590995814973549097, 4.59552340167353895213159707003, 5.47324503241391808637106277448, 6.36563868551802132486744377028, 7.23441263780066662688576067453, 8.700609171972631808768935025903, 9.087425898700827798526934948957, 10.37689865774745240075309777691