L(s) = 1 | + (1.31 + 0.759i)2-s + (−0.653 + 0.175i)3-s + (0.152 + 0.263i)4-s + (2.15 + 0.600i)5-s + (−0.991 − 0.265i)6-s + (1.29 + 2.24i)7-s − 2.57i·8-s + (−2.20 + 1.27i)9-s + (2.37 + 2.42i)10-s + (4.82 − 1.29i)11-s + (−0.145 − 0.145i)12-s + 3.93i·14-s + (−1.51 − 0.0150i)15-s + (2.25 − 3.91i)16-s + (−0.0211 + 0.0790i)17-s − 3.85·18-s + ⋯ |
L(s) = 1 | + (0.929 + 0.536i)2-s + (−0.377 + 0.101i)3-s + (0.0761 + 0.131i)4-s + (0.963 + 0.268i)5-s + (−0.404 − 0.108i)6-s + (0.490 + 0.849i)7-s − 0.910i·8-s + (−0.733 + 0.423i)9-s + (0.751 + 0.766i)10-s + (1.45 − 0.390i)11-s + (−0.0420 − 0.0420i)12-s + 1.05i·14-s + (−0.390 − 0.00389i)15-s + (0.564 − 0.977i)16-s + (−0.00513 + 0.0191i)17-s − 0.909·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.550 - 0.834i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.550 - 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.35571 + 1.26845i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.35571 + 1.26845i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-2.15 - 0.600i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-1.31 - 0.759i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.653 - 0.175i)T + (2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (-1.29 - 2.24i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-4.82 + 1.29i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (0.0211 - 0.0790i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (0.726 - 2.71i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.05 - 3.91i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (4.31 + 2.49i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.32 + 2.32i)T - 31iT^{2} \) |
| 37 | \( 1 + (-0.285 + 0.494i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.69 - 10.0i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (0.132 + 0.0354i)T + (37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 - 2.30T + 47T^{2} \) |
| 53 | \( 1 + (-6.70 - 6.70i)T + 53iT^{2} \) |
| 59 | \( 1 + (2.59 + 0.694i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (2.74 + 4.74i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (13.6 + 7.89i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (7.42 + 1.98i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 - 6.61iT - 73T^{2} \) |
| 79 | \( 1 + 5.71iT - 79T^{2} \) |
| 83 | \( 1 + 3.70T + 83T^{2} \) |
| 89 | \( 1 + (4.63 + 17.2i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-4.65 + 2.68i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32388621521171108987550045741, −9.407000582145317195279407396981, −8.796502976910130941452832392531, −7.53491704604868062128816358625, −6.24314469280300030296274890466, −5.99667370497567152175019367901, −5.27221974282099532686599752958, −4.27195882641174546176685433048, −3.00604379210378082981054656107, −1.56914670491405406544045682754,
1.23736946958450352686670350882, 2.51438004034935702098593987162, 3.79714937141590995814973549097, 4.59552340167353895213159707003, 5.47324503241391808637106277448, 6.36563868551802132486744377028, 7.23441263780066662688576067453, 8.700609171972631808768935025903, 9.087425898700827798526934948957, 10.37689865774745240075309777691