L(s) = 1 | + (1.31 − 0.759i)2-s + (−0.653 − 0.175i)3-s + (0.152 − 0.263i)4-s + (2.15 − 0.600i)5-s + (−0.991 + 0.265i)6-s + (1.29 − 2.24i)7-s + 2.57i·8-s + (−2.20 − 1.27i)9-s + (2.37 − 2.42i)10-s + (4.82 + 1.29i)11-s + (−0.145 + 0.145i)12-s − 3.93i·14-s + (−1.51 + 0.0150i)15-s + (2.25 + 3.91i)16-s + (−0.0211 − 0.0790i)17-s − 3.85·18-s + ⋯ |
L(s) = 1 | + (0.929 − 0.536i)2-s + (−0.377 − 0.101i)3-s + (0.0761 − 0.131i)4-s + (0.963 − 0.268i)5-s + (−0.404 + 0.108i)6-s + (0.490 − 0.849i)7-s + 0.910i·8-s + (−0.733 − 0.423i)9-s + (0.751 − 0.766i)10-s + (1.45 + 0.390i)11-s + (−0.0420 + 0.0420i)12-s − 1.05i·14-s + (−0.390 + 0.00389i)15-s + (0.564 + 0.977i)16-s + (−0.00513 − 0.0191i)17-s − 0.909·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.550 + 0.834i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.550 + 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.35571 - 1.26845i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.35571 - 1.26845i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-2.15 + 0.600i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-1.31 + 0.759i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.653 + 0.175i)T + (2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-1.29 + 2.24i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-4.82 - 1.29i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (0.0211 + 0.0790i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (0.726 + 2.71i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.05 + 3.91i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (4.31 - 2.49i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.32 - 2.32i)T + 31iT^{2} \) |
| 37 | \( 1 + (-0.285 - 0.494i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.69 + 10.0i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (0.132 - 0.0354i)T + (37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 - 2.30T + 47T^{2} \) |
| 53 | \( 1 + (-6.70 + 6.70i)T - 53iT^{2} \) |
| 59 | \( 1 + (2.59 - 0.694i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (2.74 - 4.74i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (13.6 - 7.89i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7.42 - 1.98i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + 6.61iT - 73T^{2} \) |
| 79 | \( 1 - 5.71iT - 79T^{2} \) |
| 83 | \( 1 + 3.70T + 83T^{2} \) |
| 89 | \( 1 + (4.63 - 17.2i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-4.65 - 2.68i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37689865774745240075309777691, −9.087425898700827798526934948957, −8.700609171972631808768935025903, −7.23441263780066662688576067453, −6.36563868551802132486744377028, −5.47324503241391808637106277448, −4.59552340167353895213159707003, −3.79714937141590995814973549097, −2.51438004034935702098593987162, −1.23736946958450352686670350882,
1.56914670491405406544045682754, 3.00604379210378082981054656107, 4.27195882641174546176685433048, 5.27221974282099532686599752958, 5.99667370497567152175019367901, 6.24314469280300030296274890466, 7.53491704604868062128816358625, 8.796502976910130941452832392531, 9.407000582145317195279407396981, 10.32388621521171108987550045741