L(s) = 1 | + (4.5 + 7.79i)3-s + (−39.3 + 68.1i)5-s + (−100. − 81.7i)7-s + (−40.5 + 70.1i)9-s + (−345. − 598. i)11-s + 818.·13-s − 708.·15-s + (−554. − 960. i)17-s + (286. − 496. i)19-s + (184. − 1.15e3i)21-s + (−1.25e3 + 2.18e3i)23-s + (−1.53e3 − 2.65e3i)25-s − 729·27-s − 3.25e3·29-s + (−5.05e3 − 8.76e3i)31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (−0.703 + 1.21i)5-s + (−0.776 − 0.630i)7-s + (−0.166 + 0.288i)9-s + (−0.861 − 1.49i)11-s + 1.34·13-s − 0.812·15-s + (−0.465 − 0.806i)17-s + (0.182 − 0.315i)19-s + (0.0913 − 0.570i)21-s + (−0.496 + 0.859i)23-s + (−0.490 − 0.849i)25-s − 0.192·27-s − 0.719·29-s + (−0.945 − 1.63i)31-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)(−0.580+0.814i)Λ(6−s)
Λ(s)=(=(84s/2ΓC(s+5/2)L(s)(−0.580+0.814i)Λ(1−s)
Degree: |
2 |
Conductor: |
84
= 22⋅3⋅7
|
Sign: |
−0.580+0.814i
|
Analytic conductor: |
13.4722 |
Root analytic conductor: |
3.67045 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ84(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 84, ( :5/2), −0.580+0.814i)
|
Particular Values
L(3) |
≈ |
0.114845−0.222843i |
L(21) |
≈ |
0.114845−0.222843i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−4.5−7.79i)T |
| 7 | 1+(100.+81.7i)T |
good | 5 | 1+(39.3−68.1i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(345.+598.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1−818.T+3.71e5T2 |
| 17 | 1+(554.+960.i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(−286.+496.i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(1.25e3−2.18e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1+3.25e3T+2.05e7T2 |
| 31 | 1+(5.05e3+8.76e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(2.43e3−4.21e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1+1.30e4T+1.15e8T2 |
| 43 | 1+9.30e3T+1.47e8T2 |
| 47 | 1+(6.45e3−1.11e4i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(−9.77e3−1.69e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(−1.25e4−2.17e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(−1.56e4+2.71e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(2.79e4+4.84e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1−2.05e4T+1.80e9T2 |
| 73 | 1+(−3.38e4−5.85e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(7.03e3−1.21e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1+7.71e4T+3.93e9T2 |
| 89 | 1+(160.−277.i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1+1.12e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.39730578106393180371757284254, −11.25379554717136408593980789242, −10.99313555177634479167353052233, −9.720468430261817521506583853813, −8.306685128970502208157027819600, −7.16485187391012257037199814276, −5.86943257441109468115923548512, −3.75439062531395380934642240308, −3.06782495035286905844898922359, −0.097173184674663072015220257702,
1.80678864141657138763027891625, 3.76456480697270000393272163943, 5.27893519718277550736754900197, 6.80461502144275504171245742293, 8.232673749181011799991607386553, 8.884804332923566815831229099069, 10.29127135283901479309559263535, 11.93095783058076930191312645132, 12.73647252415185237504347867009, 13.17664300971680886733399317619