L(s) = 1 | + (4.5 − 7.79i)3-s + (−39.3 − 68.1i)5-s + (−100. + 81.7i)7-s + (−40.5 − 70.1i)9-s + (−345. + 598. i)11-s + 818.·13-s − 708.·15-s + (−554. + 960. i)17-s + (286. + 496. i)19-s + (184. + 1.15e3i)21-s + (−1.25e3 − 2.18e3i)23-s + (−1.53e3 + 2.65e3i)25-s − 729·27-s − 3.25e3·29-s + (−5.05e3 + 8.76e3i)31-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (−0.703 − 1.21i)5-s + (−0.776 + 0.630i)7-s + (−0.166 − 0.288i)9-s + (−0.861 + 1.49i)11-s + 1.34·13-s − 0.812·15-s + (−0.465 + 0.806i)17-s + (0.182 + 0.315i)19-s + (0.0913 + 0.570i)21-s + (−0.496 − 0.859i)23-s + (−0.490 + 0.849i)25-s − 0.192·27-s − 0.719·29-s + (−0.945 + 1.63i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.580 - 0.814i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.580 - 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.114845 + 0.222843i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.114845 + 0.222843i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-4.5 + 7.79i)T \) |
| 7 | \( 1 + (100. - 81.7i)T \) |
good | 5 | \( 1 + (39.3 + 68.1i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (345. - 598. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 - 818.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (554. - 960. i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-286. - 496. i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (1.25e3 + 2.18e3i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 + 3.25e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (5.05e3 - 8.76e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (2.43e3 + 4.21e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 + 1.30e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 9.30e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (6.45e3 + 1.11e4i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-9.77e3 + 1.69e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-1.25e4 + 2.17e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-1.56e4 - 2.71e4i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (2.79e4 - 4.84e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 - 2.05e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-3.38e4 + 5.85e4i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (7.03e3 + 1.21e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 + 7.71e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (160. + 277. i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 + 1.12e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.17664300971680886733399317619, −12.73647252415185237504347867009, −11.93095783058076930191312645132, −10.29127135283901479309559263535, −8.884804332923566815831229099069, −8.232673749181011799991607386553, −6.80461502144275504171245742293, −5.27893519718277550736754900197, −3.76456480697270000393272163943, −1.80678864141657138763027891625,
0.097173184674663072015220257702, 3.06782495035286905844898922359, 3.75439062531395380934642240308, 5.86943257441109468115923548512, 7.16485187391012257037199814276, 8.306685128970502208157027819600, 9.720468430261817521506583853813, 10.99313555177634479167353052233, 11.25379554717136408593980789242, 13.39730578106393180371757284254