L(s) = 1 | + (4.5 + 7.79i)3-s + (15.9 − 27.6i)5-s + (85.7 + 97.2i)7-s + (−40.5 + 70.1i)9-s + (−130. − 225. i)11-s + 769.·13-s + 287.·15-s + (776. + 1.34e3i)17-s + (−375. + 649. i)19-s + (−372. + 1.10e3i)21-s + (−377. + 653. i)23-s + (1.05e3 + 1.82e3i)25-s − 729·27-s + 6.00e3·29-s + (3.21e3 + 5.55e3i)31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (0.285 − 0.495i)5-s + (0.661 + 0.750i)7-s + (−0.166 + 0.288i)9-s + (−0.325 − 0.562i)11-s + 1.26·13-s + 0.330·15-s + (0.651 + 1.12i)17-s + (−0.238 + 0.412i)19-s + (−0.184 + 0.547i)21-s + (−0.148 + 0.257i)23-s + (0.336 + 0.582i)25-s − 0.192·27-s + 1.32·29-s + (0.599 + 1.03i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.706 - 0.707i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.706 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.08237 + 0.862844i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.08237 + 0.862844i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-4.5 - 7.79i)T \) |
| 7 | \( 1 + (-85.7 - 97.2i)T \) |
good | 5 | \( 1 + (-15.9 + 27.6i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (130. + 225. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 769.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-776. - 1.34e3i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (375. - 649. i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (377. - 653. i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 - 6.00e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-3.21e3 - 5.55e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-2.38e3 + 4.13e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 + 5.42e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.18e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-8.71e3 + 1.50e4i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (1.88e4 + 3.26e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.10e4 + 1.91e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-4.08e3 + 7.07e3i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (6.50e3 + 1.12e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 1.23e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (2.18e4 + 3.77e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (3.83e4 - 6.64e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 - 2.18e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-6.84e4 + 1.18e5i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + 9.30e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.51605742690924285867595647623, −12.38804560447090398750272309344, −11.16912294207430047356182819325, −10.14607842283553332231022722423, −8.675183927893179770482470021399, −8.269299887435917048780181716560, −6.10208303215763370207627473459, −5.03404498602410703001881730994, −3.41957957351804240929443631520, −1.53819516409194577005221787439,
1.08328569138545676589532022316, 2.77977641546340569007566674488, 4.54282996525474825334978965668, 6.29207697722968644524151047594, 7.40914074779058748453269482407, 8.450270798764431032088715076058, 9.956867790221952783321740832168, 10.96174922226702206192855065815, 12.08277487345164215345836449691, 13.49053382475129142357458678149