L(s) = 1 | + (4.5 + 7.79i)3-s + (15.9 − 27.6i)5-s + (85.7 + 97.2i)7-s + (−40.5 + 70.1i)9-s + (−130. − 225. i)11-s + 769.·13-s + 287.·15-s + (776. + 1.34e3i)17-s + (−375. + 649. i)19-s + (−372. + 1.10e3i)21-s + (−377. + 653. i)23-s + (1.05e3 + 1.82e3i)25-s − 729·27-s + 6.00e3·29-s + (3.21e3 + 5.55e3i)31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (0.285 − 0.495i)5-s + (0.661 + 0.750i)7-s + (−0.166 + 0.288i)9-s + (−0.325 − 0.562i)11-s + 1.26·13-s + 0.330·15-s + (0.651 + 1.12i)17-s + (−0.238 + 0.412i)19-s + (−0.184 + 0.547i)21-s + (−0.148 + 0.257i)23-s + (0.336 + 0.582i)25-s − 0.192·27-s + 1.32·29-s + (0.599 + 1.03i)31-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)(0.706−0.707i)Λ(6−s)
Λ(s)=(=(84s/2ΓC(s+5/2)L(s)(0.706−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
84
= 22⋅3⋅7
|
Sign: |
0.706−0.707i
|
Analytic conductor: |
13.4722 |
Root analytic conductor: |
3.67045 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ84(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 84, ( :5/2), 0.706−0.707i)
|
Particular Values
L(3) |
≈ |
2.08237+0.862844i |
L(21) |
≈ |
2.08237+0.862844i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−4.5−7.79i)T |
| 7 | 1+(−85.7−97.2i)T |
good | 5 | 1+(−15.9+27.6i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(130.+225.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1−769.T+3.71e5T2 |
| 17 | 1+(−776.−1.34e3i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(375.−649.i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(377.−653.i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1−6.00e3T+2.05e7T2 |
| 31 | 1+(−3.21e3−5.55e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(−2.38e3+4.13e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1+5.42e3T+1.15e8T2 |
| 43 | 1+1.18e4T+1.47e8T2 |
| 47 | 1+(−8.71e3+1.50e4i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(1.88e4+3.26e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(1.10e4+1.91e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(−4.08e3+7.07e3i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(6.50e3+1.12e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1+1.23e4T+1.80e9T2 |
| 73 | 1+(2.18e4+3.77e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(3.83e4−6.64e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1−2.18e4T+3.93e9T2 |
| 89 | 1+(−6.84e4+1.18e5i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1+9.30e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.51605742690924285867595647623, −12.38804560447090398750272309344, −11.16912294207430047356182819325, −10.14607842283553332231022722423, −8.675183927893179770482470021399, −8.269299887435917048780181716560, −6.10208303215763370207627473459, −5.03404498602410703001881730994, −3.41957957351804240929443631520, −1.53819516409194577005221787439,
1.08328569138545676589532022316, 2.77977641546340569007566674488, 4.54282996525474825334978965668, 6.29207697722968644524151047594, 7.40914074779058748453269482407, 8.450270798764431032088715076058, 9.956867790221952783321740832168, 10.96174922226702206192855065815, 12.08277487345164215345836449691, 13.49053382475129142357458678149