L(s) = 1 | + (4.5 − 7.79i)3-s + (15.9 + 27.6i)5-s + (85.7 − 97.2i)7-s + (−40.5 − 70.1i)9-s + (−130. + 225. i)11-s + 769.·13-s + 287.·15-s + (776. − 1.34e3i)17-s + (−375. − 649. i)19-s + (−372. − 1.10e3i)21-s + (−377. − 653. i)23-s + (1.05e3 − 1.82e3i)25-s − 729·27-s + 6.00e3·29-s + (3.21e3 − 5.55e3i)31-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (0.285 + 0.495i)5-s + (0.661 − 0.750i)7-s + (−0.166 − 0.288i)9-s + (−0.325 + 0.562i)11-s + 1.26·13-s + 0.330·15-s + (0.651 − 1.12i)17-s + (−0.238 − 0.412i)19-s + (−0.184 − 0.547i)21-s + (−0.148 − 0.257i)23-s + (0.336 − 0.582i)25-s − 0.192·27-s + 1.32·29-s + (0.599 − 1.03i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.706 + 0.707i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.706 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.08237 - 0.862844i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.08237 - 0.862844i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-4.5 + 7.79i)T \) |
| 7 | \( 1 + (-85.7 + 97.2i)T \) |
good | 5 | \( 1 + (-15.9 - 27.6i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (130. - 225. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 - 769.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-776. + 1.34e3i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (375. + 649. i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (377. + 653. i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 - 6.00e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-3.21e3 + 5.55e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-2.38e3 - 4.13e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 + 5.42e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.18e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-8.71e3 - 1.50e4i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (1.88e4 - 3.26e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.10e4 - 1.91e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-4.08e3 - 7.07e3i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (6.50e3 - 1.12e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 1.23e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (2.18e4 - 3.77e4i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (3.83e4 + 6.64e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 - 2.18e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-6.84e4 - 1.18e5i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 + 9.30e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.49053382475129142357458678149, −12.08277487345164215345836449691, −10.96174922226702206192855065815, −9.956867790221952783321740832168, −8.450270798764431032088715076058, −7.40914074779058748453269482407, −6.29207697722968644524151047594, −4.54282996525474825334978965668, −2.77977641546340569007566674488, −1.08328569138545676589532022316,
1.53819516409194577005221787439, 3.41957957351804240929443631520, 5.03404498602410703001881730994, 6.10208303215763370207627473459, 8.269299887435917048780181716560, 8.675183927893179770482470021399, 10.14607842283553332231022722423, 11.16912294207430047356182819325, 12.38804560447090398750272309344, 13.51605742690924285867595647623