Properties

Label 2-832-1.1-c3-0-14
Degree $2$
Conductor $832$
Sign $1$
Analytic cond. $49.0895$
Root an. cond. $7.00639$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.34·3-s − 15.7·5-s − 29.0·7-s + 26.8·9-s − 33.7·11-s − 13·13-s − 115.·15-s + 15.5·17-s + 103.·19-s − 213.·21-s + 145.·23-s + 122.·25-s − 0.906·27-s + 285.·29-s + 221.·31-s − 247.·33-s + 457.·35-s − 161.·37-s − 95.4·39-s − 404.·41-s + 198.·43-s − 422.·45-s − 125.·47-s + 501.·49-s + 114.·51-s + 548.·53-s + 530.·55-s + ⋯
L(s)  = 1  + 1.41·3-s − 1.40·5-s − 1.56·7-s + 0.995·9-s − 0.924·11-s − 0.277·13-s − 1.98·15-s + 0.221·17-s + 1.24·19-s − 2.21·21-s + 1.31·23-s + 0.979·25-s − 0.00646·27-s + 1.82·29-s + 1.28·31-s − 1.30·33-s + 2.20·35-s − 0.719·37-s − 0.391·39-s − 1.54·41-s + 0.705·43-s − 1.40·45-s − 0.389·47-s + 1.46·49-s + 0.313·51-s + 1.42·53-s + 1.29·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $1$
Analytic conductor: \(49.0895\)
Root analytic conductor: \(7.00639\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 832,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.776691049\)
\(L(\frac12)\) \(\approx\) \(1.776691049\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + 13T \)
good3 \( 1 - 7.34T + 27T^{2} \)
5 \( 1 + 15.7T + 125T^{2} \)
7 \( 1 + 29.0T + 343T^{2} \)
11 \( 1 + 33.7T + 1.33e3T^{2} \)
17 \( 1 - 15.5T + 4.91e3T^{2} \)
19 \( 1 - 103.T + 6.85e3T^{2} \)
23 \( 1 - 145.T + 1.21e4T^{2} \)
29 \( 1 - 285.T + 2.43e4T^{2} \)
31 \( 1 - 221.T + 2.97e4T^{2} \)
37 \( 1 + 161.T + 5.06e4T^{2} \)
41 \( 1 + 404.T + 6.89e4T^{2} \)
43 \( 1 - 198.T + 7.95e4T^{2} \)
47 \( 1 + 125.T + 1.03e5T^{2} \)
53 \( 1 - 548.T + 1.48e5T^{2} \)
59 \( 1 - 536.T + 2.05e5T^{2} \)
61 \( 1 - 643.T + 2.26e5T^{2} \)
67 \( 1 - 171.T + 3.00e5T^{2} \)
71 \( 1 + 480.T + 3.57e5T^{2} \)
73 \( 1 + 353.T + 3.89e5T^{2} \)
79 \( 1 + 1.20e3T + 4.93e5T^{2} \)
83 \( 1 - 263.T + 5.71e5T^{2} \)
89 \( 1 - 458.T + 7.04e5T^{2} \)
97 \( 1 - 831.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.822245566989839763502960165663, −8.759912773992471447503292940106, −8.251321034720705417925410084001, −7.34189881984823842396622974372, −6.80273421501053683577543376132, −5.22837924627923732185391809415, −4.02168056986208182997104987042, −3.04977562129084836860345280634, −2.86619313230809329393704053635, −0.66704096019599527810324455387, 0.66704096019599527810324455387, 2.86619313230809329393704053635, 3.04977562129084836860345280634, 4.02168056986208182997104987042, 5.22837924627923732185391809415, 6.80273421501053683577543376132, 7.34189881984823842396622974372, 8.251321034720705417925410084001, 8.759912773992471447503292940106, 9.822245566989839763502960165663

Graph of the $Z$-function along the critical line