Properties

Label 832.4.a.bg
Level $832$
Weight $4$
Character orbit 832.a
Self dual yes
Analytic conductor $49.090$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [832,4,Mod(1,832)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(832, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("832.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 832.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,11,0,5,0,-21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.0895891248\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 66x^{3} - 139x^{2} + 283x + 676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + 2) q^{3} + ( - \beta_1 + 1) q^{5} + (\beta_{3} - \beta_{2} - \beta_1 - 4) q^{7} + ( - \beta_{4} - \beta_{3} - 4 \beta_{2} + 8) q^{9} + ( - 3 \beta_{4} + 2 \beta_{3} + \cdots - 2) q^{11}+ \cdots + ( - 14 \beta_{4} - 9 \beta_{3} + \cdots + 258) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 11 q^{3} + 5 q^{5} - 21 q^{7} + 44 q^{9} - 18 q^{11} - 65 q^{13} - 39 q^{15} + 123 q^{17} + 142 q^{19} + 27 q^{21} - 92 q^{23} + 194 q^{25} + 449 q^{27} + 206 q^{29} - 436 q^{31} + 302 q^{33} + 817 q^{35}+ \cdots + 1404 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 66x^{3} - 139x^{2} + 283x + 676 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 24\nu^{4} - 103\nu^{3} - 1211\nu^{2} + 657\nu + 4446 ) / 163 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -28\nu^{4} + 93\nu^{3} + 1603\nu^{2} + 293\nu - 7143 ) / 163 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -50\nu^{4} + 201\nu^{3} + 2781\nu^{2} - 1165\nu - 14560 ) / 163 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -82\nu^{4} + 284\nu^{3} + 4776\nu^{2} - 574\nu - 24074 ) / 163 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{4} + \beta_{3} + 2\beta_{2} + \beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{4} + 3\beta_{3} + \beta_{2} + 4\beta _1 + 55 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -53\beta_{4} + 81\beta_{3} + 68\beta_{2} + 67\beta _1 + 560 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -301\beta_{4} + 623\beta_{3} + 338\beta_{2} + 691\beta _1 + 7158 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.15905
−2.68352
9.28044
−5.44852
−2.30745
0 −5.91123 0 2.81407 0 −29.5771 0 7.94266 0
1.2 0 −0.240222 0 18.1950 0 23.9357 0 −26.9423 0
1.3 0 0.323589 0 −10.9246 0 6.41598 0 −26.8953 0
1.4 0 7.34006 0 −15.7284 0 −29.0676 0 26.8765 0
1.5 0 9.48781 0 10.6440 0 7.29306 0 63.0185 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.4.a.bg 5
4.b odd 2 1 832.4.a.bf 5
8.b even 2 1 416.4.a.h 5
8.d odd 2 1 416.4.a.i yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.4.a.h 5 8.b even 2 1
416.4.a.i yes 5 8.d odd 2 1
832.4.a.bf 5 4.b odd 2 1
832.4.a.bg 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(832))\):

\( T_{3}^{5} - 11T_{3}^{4} - 29T_{3}^{3} + 415T_{3}^{2} - 32T_{3} - 32 \) Copy content Toggle raw display
\( T_{5}^{5} - 5T_{5}^{4} - 397T_{5}^{3} + 1341T_{5}^{2} + 32696T_{5} - 93644 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 11 T^{4} + \cdots - 32 \) Copy content Toggle raw display
$5$ \( T^{5} - 5 T^{4} + \cdots - 93644 \) Copy content Toggle raw display
$7$ \( T^{5} + 21 T^{4} + \cdots - 962904 \) Copy content Toggle raw display
$11$ \( T^{5} + 18 T^{4} + \cdots + 93856576 \) Copy content Toggle raw display
$13$ \( (T + 13)^{5} \) Copy content Toggle raw display
$17$ \( T^{5} - 123 T^{4} + \cdots - 89830068 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots - 4528084672 \) Copy content Toggle raw display
$23$ \( T^{5} + 92 T^{4} + \cdots - 44302336 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 247555437664 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 92054386688 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 4626715132 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 245417766912 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 260119797184 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 95050280376 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 8027052256256 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 5206076073024 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 6052484202496 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 2854340132288 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 5105537071224 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 4847877719264 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 1514902929408 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 208379470739968 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 9206645570784 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 839229027548768 \) Copy content Toggle raw display
show more
show less