| L(s) = 1 | − 4.38i·2-s + 3i·3-s − 11.2·4-s + 13.1·6-s − 11.7i·7-s + 14.2i·8-s − 9·9-s + 11·11-s − 33.7i·12-s + 72.8i·13-s − 51.4·14-s − 27.3·16-s − 9.89i·17-s + 39.4i·18-s − 0.0238·19-s + ⋯ |
| L(s) = 1 | − 1.55i·2-s + 0.577i·3-s − 1.40·4-s + 0.895·6-s − 0.633i·7-s + 0.631i·8-s − 0.333·9-s + 0.301·11-s − 0.812i·12-s + 1.55i·13-s − 0.982·14-s − 0.426·16-s − 0.141i·17-s + 0.517i·18-s − 0.000288·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.470245304\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.470245304\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 - 3iT \) |
| 5 | \( 1 \) |
| 11 | \( 1 - 11T \) |
| good | 2 | \( 1 + 4.38iT - 8T^{2} \) |
| 7 | \( 1 + 11.7iT - 343T^{2} \) |
| 13 | \( 1 - 72.8iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 9.89iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 0.0238T + 6.85e3T^{2} \) |
| 23 | \( 1 + 73.0iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 202.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 181.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 299. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 88.5T + 6.89e4T^{2} \) |
| 43 | \( 1 - 146. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 185. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 347. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 691.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 491.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 715. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 541.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 159. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 212.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 413. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.09e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 567. iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.878796884349014903338724412477, −9.342139038748520502213393055616, −8.538202627054264409292146970457, −7.20037113926887835128432236946, −6.23387546928713602285425681578, −4.64799749478372910708621657688, −4.21859974898862005948027952461, −3.24578303798602219796874319867, −2.12017290938942708989069213662, −0.984575973238767577934621461867,
0.46888439050595172039664651495, 2.20446374718545994646744891923, 3.59569481581136268637450347590, 5.09322332178510061089679187157, 5.70191986036564113213159354284, 6.38474898242672282771120981820, 7.42177892801253557396638038632, 7.910504469344984720289546022607, 8.732027776229399882564911168074, 9.476800366853235486167951393374