Properties

Label 2-8208-1.1-c1-0-139
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.33·5-s + 2.33·7-s + 0.771·11-s − 6.14·13-s − 2·17-s − 19-s − 8.02·23-s + 0.466·25-s + 6.38·29-s − 2.88·31-s + 5.46·35-s + 7.49·37-s − 10.2·41-s + 8.02·43-s − 7.25·47-s − 1.53·49-s − 9.70·53-s + 1.80·55-s + 3.80·59-s − 8.01·61-s − 14.3·65-s − 12.9·67-s + 11.6·71-s − 13.5·73-s + 1.80·77-s + 14.2·79-s + 11.1·83-s + ⋯
L(s)  = 1  + 1.04·5-s + 0.883·7-s + 0.232·11-s − 1.70·13-s − 0.485·17-s − 0.229·19-s − 1.67·23-s + 0.0933·25-s + 1.18·29-s − 0.517·31-s + 0.924·35-s + 1.23·37-s − 1.60·41-s + 1.22·43-s − 1.05·47-s − 0.219·49-s − 1.33·53-s + 0.243·55-s + 0.495·59-s − 1.02·61-s − 1.78·65-s − 1.58·67-s + 1.38·71-s − 1.58·73-s + 0.205·77-s + 1.60·79-s + 1.22·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 - 2.33T + 5T^{2} \)
7 \( 1 - 2.33T + 7T^{2} \)
11 \( 1 - 0.771T + 11T^{2} \)
13 \( 1 + 6.14T + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
23 \( 1 + 8.02T + 23T^{2} \)
29 \( 1 - 6.38T + 29T^{2} \)
31 \( 1 + 2.88T + 31T^{2} \)
37 \( 1 - 7.49T + 37T^{2} \)
41 \( 1 + 10.2T + 41T^{2} \)
43 \( 1 - 8.02T + 43T^{2} \)
47 \( 1 + 7.25T + 47T^{2} \)
53 \( 1 + 9.70T + 53T^{2} \)
59 \( 1 - 3.80T + 59T^{2} \)
61 \( 1 + 8.01T + 61T^{2} \)
67 \( 1 + 12.9T + 67T^{2} \)
71 \( 1 - 11.6T + 71T^{2} \)
73 \( 1 + 13.5T + 73T^{2} \)
79 \( 1 - 14.2T + 79T^{2} \)
83 \( 1 - 11.1T + 83T^{2} \)
89 \( 1 + 0.151T + 89T^{2} \)
97 \( 1 + 5.34T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66667394602552220143747648795, −6.59932049794746064380449041254, −6.18856559051557454527031648351, −5.27246375345138347480188479402, −4.76921006733939512692655882350, −4.09298908709797765048841564578, −2.82688661399930669177662289083, −2.13105777701585075044408233620, −1.53781235065287960630858154652, 0, 1.53781235065287960630858154652, 2.13105777701585075044408233620, 2.82688661399930669177662289083, 4.09298908709797765048841564578, 4.76921006733939512692655882350, 5.27246375345138347480188479402, 6.18856559051557454527031648351, 6.59932049794746064380449041254, 7.66667394602552220143747648795

Graph of the $Z$-function along the critical line